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Abstract

Given two points of a generalized Robertson—Walker space—time, the existence, multiplicity and
causal character of geodesics connecting them is characterized. Conjugate points of such geodesics
are related to conjugate points of geodesics on the fiber, and Morse-type relations are obtained.
Applications to bidimensional space—times and to GRW space—times satisfying the timelike con-
vergence condition are also found. © 2000 Elsevier Science B.V. All rights reserved.
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1. Introduction

Recently, geodesic connectedness of Lorentzian manifolds has been widely studied, and
some related questions appear which invoke great interest; among them are (i) how to
determine the existence, multiplicity and causal character of geodesics connecting two
points, and (ii) how to study their conjugate points and to find Morse-type relations. These
guestions have been answered, totally or partially, for stationary or splitting manifolds (see,
e.g., [4,11,13,15,21]). Our purpose is to answer them totally in the class of generalized
Robertson-Walker (GRW) space—-times.

GRW space—-times (see Section 2 for precise definitions) are warped pragduets
F, g/ = —dr? + f?g) which generalize Robertson-Walker ones because no assump-
tion on their fiber is done, and they have interesting properties from both the mathematical
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and the physical point of view [1,17-19]. GRW space—times are also particular casals of
tiwarped space—timesvhose geodesic connectedness has been recently studied by using a
topological method [8]. They can be also seen as splitting type manifolds, studied in [15,
Chapter 8], or as a type of Reissner—Nordstrom intermediate space—times, studied in [9,10].
Nevertheless, we will see here that the results for GRW space—times can be obtained in a
simpler approach, and are sharper. In fact, we will develop the following direct point of view.
Given a geodesig (1) = (z(¢), yr(t)) of the GRW space-time, the componeptis a
pregeodesic of its fiber. So, itddr does not vanish, we can consider the reparameterization
yr (1), andy will cross a pointzg = (o, xo) if and only if xg = yr(70). This simple fact
yields aresulton connectedness by timelike and causal geodesics[17, Theorems 3.3and 3.7].
For spacelike geodesics, the reparameterizatign) may fail. This problem can be skipped
sometimes by simple arguments on continuity [18, Theorem 3.2], but we will study it system-
atically in order to solve completely the problem of geodesic connectedness. Moreover, this
will also be the key to solve the other related problems (multiplicity, conjugate points, etc.).
After some preliminaries in Section 2, we state the conditions for geodesic connectedness
in Section 3. In fact, we give three Conditions (A), (B), (C) of increasing generality, and
a fourth Condition (R) which covers a residual case. All these conditions are imposed on
the warping functiony; on the fiber, we assume just a weak condition on convexity (each
two pointsxo, x; can be joined by a minimizing'-geodesicyr), which is known to be
completely natural (see [17, Remark 3.2]). These conditions are somewhat cumbersome,
because they yield not only sufficient but also necessary hypotheses for geodesic connect-
edness; however, they yield very simple sufficient conditions. For example (Lemmas 3 and
9), if the GRW space—time is not geodesically connected then f must admit a limit at some
extreme of the interval = (a, b); if this extreme is Kresp. g then f’ must be strictly
positive(resp. negativiein a non-empty subintervab, b) C (a, b) (resp.(a, a) < (a, b))
(moreover, in this case Table 1 can be used). Condition (A) summarizes in which cases the
warping functionf has a “good behavior” at the extremeslof (a, b) in order to obtain

Table 1
If f is continuously extendible tb, when Condition (A) is satisfied at
b < o0 b =00
lim;_; f(1) Condition (A) lim._p f(7) Condition (A)
1 0 Yes 0 Yes
2 aeR, a#0 f' not extendible t& Noinformation o eR, a #0 Yes
lim,_, f' =B € [—00, 0) Yes
lim;p f' =B € (0, 00] No?
lim,_, f'=0and Yes
f” bounded ind — ¢, b)
1
3 00 No 00, pb? =00 Yes
b1
00, jbf < 00 NoP

aCondition (C) does not hold either. No information on Condition (R), if applicable.
PNo information on Condition (C) or (R).
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geodesic connectedness. This condition is equal to the one obtained in [8] for multiwarped
space-times; nevertheless, we will reprove it because a simpler proof is now available and
the ideas in this proof will be used in the following more general conditions. Condition (B)
takes into account that when the diameter of the fiber is finite, even a “not so good” behavior
of f at an extreme, sal, may allow the following situation: a fixed poiny = (o, x0)

can be connected tg, = (ty, x;), Wherer is close enough té, by means of a geodesic

y () = (t(t), yr(t)) such thatr () points out fromrg to b and, perhaps “bounces” close

to b. Condition (C) takes into account that even when Condition (B) does not hold, the
following situation in the previous case may hold: a geodesic which points out fom

to the extremer, bounces close te and comes back towards may connecto andzg,.
Condition (C) is shown to be the more general condition for geodesic connectedness, ex-
cept in the case: if the limit of at both extremes, b is equal to the supremum ¢f, and

this supremum is not reached &tthenzo andz;, perhaps could be joined by geodesics
which bounce many times close #candb. Examples of the strict implications between

the different conditions are provided. In Section 3, we also state our results on existence of
connecting geodesics, which are proven in Section 4:

1. Either Condition (C) or Condition (R) is sufficient for geodesic connectedness (Theorem

1).

2. If we assume a stronger condition of convexity on the fiber (each gecglesibove

is assumed to be the only geodesic which connegts;), then one of the two Condi-

tions (C) or (R) is also necessary (Theorem 2). The necessity of this stronger convexity

assumption is also discussed.

3. Under Condition (A) (or, even in some cases (B)), if the topologl &f not trivial then

each two pointso = (10, x0), 2o = (7g, Xp) can be joined by infinitely many spacelike

geodesics (Theorem 3).

4. Forcausal geodesics: (ikif andz are causally related then there exist a causal geodesic
joining them (this result was previously proven in [17]), (iiyéfandzg are not conjugate

(or even if justxp andx are not conjugate which will be shown to be less restrictive),

then there are at most finitely many timelike geodesics joining them (Theorem 3), and

(i) if the fiber is strongly convex, then there exist at most one connecting causal geodesic

(Theorem 2).

This machinery is used in Section 5 to obtain a precise relation between the conjugate
points of a geodesic ih x F and its projection o’ (Theorem 4, Corollary 1). From this
result, Morse-type relations which relate the topology of the space of curves joining two
non-conjugate points and the Morse indexes of the geodesics joining them are obtained (see
Corollary 2 and the discussion above it). We remark that, Morse indexes are defined here
in the geometrical sense “sum of the orders of conjugate points” because, for any spacelike
geodesic, its index form is positive definite and negative definite on infinite-dimensional
subspaces (if dinf > 1). About this kind of problem, the following previous references
should be taken into account. Conjugate points of null geodesics in globally hyperbolic
space—times were studied by Uhlenbeck [21], and we also make some remarks in Section
5 relating our results. In a general setting, conjugate points on spacelike geodesics were
studied by Helfer [14], who also considered the Maslov index of a geodesic. He showed that
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these conjugate points may have very different properties to conjugate points for Riemannian
manifolds (instability, non-isolation, etc.), but these problems can be skipped in our study.
In [6] (see also [15, Section 5]), an attempt to obtain a Morse theory for standard stationary
manifolds is carried out, and in [13], an index theorem (in terms of the Maslov index)
applicable in particular to stationary manifolds is obtained. On the other hand, some recent
papers studied Morse theory for timelike or lightlike geodesics joining a point and a timelike
curve (see [12] and references therein). Typically, these results are stated for strongly causal
space—times (including all GRW space—-times), and they need an assumptioerciwity
which does not necessarily hold under our hypotheses. It is not difficult to check that our
results are also applicable to face this problem.

In Section 6, we particularize the previous results to two cases. First, Section 6.1, when the
fiber is also an interval &. In this bidimensional case, the opposite metj¢’ is standard
static, and we reobtain and extend the theorem in [5]. We recall that the proofin this reference
is obtained by a completely different method, which relies on the function spectral flow on
a geodesic (see Remark (2) in Theorem 4 for noteworthy comments about this approach).
Finally, in Section 6.2, we consider the case(®icd;) > 0. This condition is natural from
a physical point of view. In fact, the stronger condition Ricv) > 0 for all timelike v
is called the timelike convergence condition, and says that gravity, on an average, attracts.
Condition Riqd,, 9,) > 0 is equivalent tof” < 0, and this inequality implies Condition
(A) if f cannot be continuously extended to positive values at any extreme. Corollary 6
summarizes our results in this case. We finish with an extension, in our ambient, of a result
in [21, Corollary 7].

2. Preliminaries

Let (F, g) be a Riemannian manifold/, —dz2) an open interval oR with I = (a, b)
and its usual metric reversed, ayid> 0 a smooth function of. A GRW space—time with
base(l, —dt?), fiber (F, g) and warping functionf > 0 is the product manifold x F
endowed with the Lorentz metric

g/ = —mjde® + (f omp)Pmpg = —dr® + f2g, @)

wherer; andny are the natural projections éfx F ontol andF, respectively, and will
be omitted when there is no possibility of confusion.

A Riemannian manifold will be called weakly convex if any two of its points can be
joined by a geodesic which minimize the distance; if, in addition this geodesic is the only
one which joins the two points it will be called strongly convex (recall that these names do
not coincide with those in [17]). Of course, if the Riemannian manif@ldg) is complete
then itis weakly convex by the Hopf—Rinow theorem, but the converse is not true (a detailed
study of when a (incomplete) Riemannian manifold is weakly convex can be seen in [2]). It
is well known that Cartan—Hadamard manifolds (i.e. complete, simply connected and with
non-positive curvature) are strongly convex and, of course, so are locally all Riemannian
manifolds (more results on strong convexity can be seen in [11]). We will denote by
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the distance oriF’ canonically associated to the Riemannian metriand by dianiF) its
diameter (the supremum, possibly infinity, of #alistances between points BY.

Given a vectolX tangent tal x F we will say thatX is timelike (resp. lightlike, causal,
spacelike) ifg/ (X, X) < 0 (resp.= 0, < 0, > 0); the timelike vector field/dt fixes
the canonical future orientation ihx F. Givenz, 7z’ € I x F, we will say that they are
causally (resp. chronologically) related if they can be joinedith z’ or vice versa) by a
future-pointing non-spacelike (resp. timelike) piecewise smooth curve.

Lety : J - I x F,y(@) = (r(t), yr(t)) be a (smooth) curve on the intengl It is
well known thaty is a geodesic with respect td if and only if

d?r c df
2 Fora °T @
Ddyr _ 2 d(fon)dyr 3)

dt d¢  for dr dt

on J, whereD/dr denotes the covariant derivative associategiicand ¢ the constant
(f* o T)g(dyr/dt, dyr/dr). From (2),

d 1/2
d_::6<_p+ < ) (4)

fzor

with D = gf(dy/dr, dy/dr) ande e {£1}. Note that, ifc = 0 then dz/dr? = 0, i.e. the
geodesics on the bageare naturally lifted to geodesics of the GRW space—time as in any
warped product. For all the other geodesics, it is natural to normalize choosing them with
¢ = 1. This normalization will be always chosen except in Section 5 where the formulae
will be explicitly taken with a different normalization. All geodesics will also be assumed
inextendible, i.e. with a maximal domain.

By Eg. (3), each (non-constang) is a pregeodesic ofF, g), so if we consider the
reparameterizatiofiz (r) = yg(¢(r)), where

dr

J = f2 oTot (5)
(in a maximal domain) we obtain th@t is a geodesic of F, g) being
dyr dpr
= ) =1
g( dr ’ dr ) ©)

From now on, we will assume thar, g) is weakly convex for any result where geodesic
connectedness is involved; such assumption has proven to be completely natural [8,17,18].
In fact, as an immediate consequence of (2) and (3) we get the following lemma.

Lemma 1. There exists a geodesic joining = (70, x0) andzy = (7g, xp), 0 < T if
10 = t§ and(d/dr)1/f?(z0) = 0.

Now, the case when the geodegic can be reparameterized by using (as, b4) as a
parameter (for some intervat,, b)) will be considered. Putting (r) = y or(r) we have
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dy /dt = h,(v)dy /dr whereh(, = h€ : (ax, by) € I — Ris defined as

1\-V2
w=er?(-pe ) ™
ande = £1. When this reparameterization can be done in such a way thagifes
from 7o to 7}, the integral ofi. is exactly equal to the distance betweenx, € F,
then a geodesic joiningro, xo) and (zy, x;) can be constructed, yielding the following
lemma.

Lemma 2. There exists a geodesic connectiag= (70, xo0) andzy = (p, Xp), 70 < 7
if there is a constanD € R (D = g/ (dy/dr, dy/dr)) such that

1. either1/f?(wo) # D or if this equality holds thexid/dr)1/f?(zg) # 0, and

2. the maximal domailay, b,) of i includes(zo, ), and

4
/ K =L, ®)
0

whereL = d(xo, x{).

(In this casee = 1.) When the reparameterizatigrir) fails then the points where the
denominator ok goes to zero must be specially taken into account. Firstly, we will specify
the maximal domain of€. Fix D € R such that 1f2(zg) > D and consider the subsets

A+={te(a,b):rost,%:D}U{b}, (9)
A_:{te(a,b):rozt,%:D}U{a}. (20)
Definea, = a,(D), by, = b, (D) by
If ii(ro) >0, then b, =min(AL —{10}), ax,=mMax(A_),
dr f2
If ii(ro) <0, then b, =min(Ay), a, = max(A_ — {t0}), (11)
dr f2
d 1 .
If Eﬁ(m) =0, then b, =min(A}), a, = max(A_).

Now, it is not difficult to check that Lemma 2 also holds if we assume the following
convention for the integral (8).

Convention 1. From now on integral (8) will be understood in the following generalized
sense: foe = 1, if fflg*if:l > L, thenthe first member of (8) denotes the usual integral and
we will also follow the notation_[g fr?hf; otherwise and ib,. # b, we can follow integrat-

ing by reversing the sense of integration (reeglk b.) and, iffi*hfz1 — [rhe=t > L,

%

then the first member of (8) meaﬁ%’hez1 - fbiéhle which we denote by [y frgéhf. If this
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last inequality does not hold amgl # a, then the procedure must follow reversing the sense
of integration ¢, > a,) as many times as necessary in the obvious way. Analogously, when

e = —1, first member of (8) means eithy@tﬁ]ﬁ/’hf:_1 =_[0] frgéh6 (in this case ifrg < 1)
the integral is negative; so equality (8) cannot holdfgojr e=-1_ faiohf?l =_p11 [o0h¢

0
or ;:)*héz—l_/‘ai*héz—l_i_fbiohéz—l =7 frf)éhé’ etc.
Remark 1. From (7), fixede e {1}, for eachD € R we have at most ong, such that
Eqg. (8) holds, possibly under ConventidnLet us introduce the paramet& = K (D, ¢)
by means oK = 1/f%(tg) — Dife = 1,K = D — 1/f?(xo) if e = —1. So, for fixed L, a
functiont(K) = 7} is defined for K in a certain domaif of R.

3. Conditions for geodesic connectedness

Now, we are ready to establish four conditions (Conditions (A), (B), (C), and (R)) on the
warping functionf which, independently, ensure the geodesic connectedness of the GRW
space—time (Lemmas 8 and 9 and Theorem 1). Roughly, Condition (A) implies not only
the geodesic connectedness but also that emgryg) € I x F can be joined with any
point (z, xg) with 75 close enough té (resp.a) by means of a geodesie(r), yr (1)) with
dr/dr > 0 (resp.< 0) nearr). Condition (B) is weaker than Condition (A), and implies not
only geodesic connectedness but also that if Condition (A) does not hblglextp.a) then
any (to, xo) € I x F can be joined with a poiriiz, xg) with z; close enough té (resp.a)
by means of a geodesic with= 1 (resp. = —1), and perhaps using Convention 1 once
close tozy. Condition (C) is the most general condition for geodesic connectedness, which
just drops a residual case covered by Condition (R).

Definition 1. Let f : (a,b) — R be a smooth function and let, = liminf,_, f (1)

(resp.m, = liminf ., f(7)). The extreme (resp.a) is a (strict) relative minimum of’

if

1. whenb < oo (resp.a > —o0), there exists > 0 such that if 0< ¢ < ¢, then
f(b—¢€)>my (resp.f(a+¢€') > my);

2. whenb = oo (respa = —o0), there exisM > Osuchthatift’ > M thenf(M’') > my,
(resp.f(=M") > my).

Condition (A) for f. Either 1/f2 does not reach dt (resp.a) a relative minimum in the
sense of Definition 1 or, otherwise

b -1/2 c -1/2
/ F2 (%—mb) =00 (resp / f2 (%—mu> =oo>

for somec € (a, b) close tob (resp.a), i.e.c € (b — ¢, b) (resp.c € (a, a + ¢€)) if the
extremeb (resp.a) is finite orc > M (resp.c < —M) if this extreme is infinite, where
andM are given in Definition 1.
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The following definition is needed to state Condition (B). Recall that this definition is
applicable just when Condition (A) does not hold.

Definition 2. Assume that the function/¥? reaches ak (resp. alz) a relative minimum
such thatfcbf‘z(l/f2 —mp)~Y2 < oo (resp. [ f2(1/f% — ma)~Y? < o0) for some
¢ € (a, b). Then we define

. b 1 ~1/2 b1 ~1/2
a=tmsun [ 2(F0) )< [r# (o)
c 1 -1/2 c 1 -1/2
o[ (a0) ) [ (an) ).
(reSp 'Enf,,ip(/a*f T ) /af 2"

whereb* = b*[ D] (resp.a* = a*[D]) is given by (11).

Remark.

1. Note that the uniform convergence of2(1/f2 — D)~1/2 on compact subsets af, b)
when D varies, ensures thdt andd, are independent of.c

2. Itis easy to check that,, d, > 0. As whenD — m,, thenb* — b, where b is a relative
minimum, itis clear that if there were continuity of the integrals with :gt(resp.m,)
thend, = 0 (resp.d, = 0). But as we will see in the example below, there exist cases in
which the inequalities are strict, anf},, d, can reach even the value.

Condition (B) for f. Either 1/f2 does not reach di (resp.a) a relative minimum or,
otherwise, it verifies eithqﬁ,”f‘z(l/fz—m;,)‘l/2 = ooforsomer € (a, b) asin Condition
(A), or 2d, > diam(F) € (0, o] (resp. either[’ f~2(1/f% — my)~Y2 = oo or 2d, >
diam(F) € (0, 00)).

Obviously Condition (A) implies Condition (B), but the converse is not true as the fol-
lowing example shows.

Example. Consider the function/lg2(r) = 1 — t defined on(0, 1). Modify this function
smoothly on{1,,},eN, I, = (an, by), a,, by — 1,a, < b, < a,+1 in such a way that the
modified function %52 satisfies 1/2 > 1/g2 onI, Vn € N and

b 1 ~1/2
/ 2 (F —~ Dn> > 2L, (12)
0

Wherefolf‘l = L andD,, is chosen decreasing to 0 and such that= %(an + b,); this
is possible by taking Af2 with derivative small enough ifu,,, %(an + b)) (e.q. if this

derivative vanishes a}(a,, + by) the integral (12) will be infinite). Then, a > L, itis
sufficient to takg F, g) such that 2, > diam(F) (see Fig. 1).

Lemma 3. If Condition(B) does not hold at kresp. g then there exidtm._,; f € (0, o]
(resp.lim,_., f € (0,c0]) and f’ > 0on(b—34, b) or (M, co) (resp.f’ < 0on(a, a—+3)
or (—oo, —M)) for somes > 0 small orM > 0 big.
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1/f?

1

T T T T A\ 4

0 a) b1 a by 1

Fig. 1. Condition (B) is satisfied but not Condition (A).

Proof. Reasoning fob < oo, assume that Condition (B) does not holdbafhen ¥/ f2
reaches a relative minimum m':mdf;;f—z(l/f2 —myp)~ Y2 < oo for certainzg € I (see
Definition 1). It is sufficient to prove that’ > 0 on (b — §, b). Otherwise, there exist a
sequencé€T, },eN, 70 < Tn € I,T,, — bsuchthatf’(T,) < 0. If we choose a maximumy,
of f on [t, T,], then f'(z,,) = O for n big enough. Thusff;*f—z(l/f2 - D) V2=
for D, = 1/f2%(x,). The choice oft, implies thatD, — my, which contradicts that
dp < o0. O

Remark. If Condition (B) does not hold at Kresp. @ thenlim,_, 1/f2 = my (resp.
lim; 4 1/f2 =myg).

From Lemma 3, it is natural to construct Table 1, where it is assumed tigatontin-
uously extendible t& (the table fora would be analogous, but reversing the sign of the
corresponding).
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The following definition, necessary to state Condition (C), is applicable when Condition
(B) does not hold.

Definition 3. Assume that the functiory} 2 reaches ak (resp.a) a relative minimum such
that 24, < diam(F) andm < my (resp. 2, < diam(F) andm < m,) wherem is the
infimum value of ¥f2in (a, b). Chooserg € (b — €, b) or 1o > M (resp.to € (a, a + €)
or to < —M) wheree, M are given in Definition 1. Then we define

i, = inf f f—2<——D)
b De(m,mp) as fz
b 1 ~1/2
resp i, = Dei(rrrltfm ] / f2 (ﬁ — D) ,

whereb* = b*[ D] (resp.a* = a*[D]) is given by (11).

Note that this definition is independent of the choice®f
Condition (C). Either 1/f2 does not reach at(resp.a) a relative minimum or, otherwise
either [ f=2(1/f2 — my)~Y/2 = oo for somec € (a, b) as in Condition (A), or 2, >
diam(F), or d, > i, (resp. either(¢ f=2(1/f? — ms)~Y? = oo or 2d, > diam(F) or
dy > ig).

Again Condition (B) implies obviously Condition (C), and a counterexample to the
converse is shown.

Example. Let 1/f2 be the function in the previous example. We have that the smooth
function f defined on(—1/N, 1) such that lim_,_1/y 1/f? = 0, 1/ f?(0) = N + 1 and
1/f%(t) = N + 1/f?(z) for € (0, 1) satisfies that, < dj, for N big enough. Then itis
sufficient to takg F, g) such that 2, < diam(F) (see Fig. 2).

For the remaining residual case, we need the following definition, where Convention 1
is explicitly used.

Definition 4. Assume ¥f2 > m for t € (a, b) andm, = m; = m. Then we define

“ (1 —-1/2
r!'(zp) = lim liminf / - <_ - D)
! e\\0 D\um (=D"[n-1] J1o ! fz

b—e 1 -1/2
of () }
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1//f?

} T

A~ 4 T

-1/N |0 1

Fig. 2. Condition (C) is satisfied but not Condition (B).

b 1 —1/2
ri (tg) = lim lim sup / f‘2 (—2 — D>
‘ eNO p | v Jro f
+/~b* f_2 (i B D>—1/2
b—e fz '
by 5 1 -1/2
" (rg) = lim liminf / - (— — D)
! 0 6\0 D\ymn (_1);171["_1] 0 f f2
e (hn)
a-+e fz '

@ 01 -1/2
1" (7o) = lim limsu / - (— - D)
S( ) e\o0 D\mp (=) —1[n) 70 f f2

295

(13)
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forn > 1, and

0 . . . b—e ) 1 —1/2

ri(r0) = ll@ohg\lﬂj /TO f (F - D) ,
by 1 -1/2 b 1 -1/2

r2(z0) = lim lim sup / 2 <_ - D) +/ f2 <_ _ D)

K e\0 D\um 0 ' f2 e f2 y
0 70 P —1/2
1%(x0) = lim lim in / - ( _ D) ,

(t0) lim fimin { a+€f }

1

12
0 L no,(1 —1/2 ave 11 -1/2
1)) = lim limsup / £ (F_D> +/a ' (F—D) .

(14)
If some extreme of is infinite, previous definition must be understood in the natural way
(see comments above formula (27)).
Recall that?(zo) = fj; F721/f2 = m)~Y2 (resp.l(r0) = [°f~2(1/f2 — m)~V/?).
Itis also clear that]' (to) < r}(to) (resp.’ (to) < I} (70)) and the sequende/ (o)} ,en IS
strictly increasing t@o (resp. replacing or r by s or /).

Condition (R). Assume %f2 > m for v € (a, b) andm, = mj = m, then ho(fo), diam
(F)] S Upsolr!(vo), r'(0)] and [2(zo), diam(F)] S U0l (t0), " (r0)] for every
0€l.

Remark 2. Whenl/f2 > m for t € (a, b) andm, = m; = m, it is clear that Condition
(C) holds if and only if ConditioriB) holds; moreover, Conditio(R) is less restrictive than
Condition(B). In fact, when ConditiottA) holds then2(zp) = co = [2(zo) for all 7 € 1,
thus Condition(R) is automatically satisfied. When Conditi¢h) does not hold then if
2d;, > diam(F) (i.e. Condition(B) holds at ) thenrA?(ro) > diam(F) for all rp € I (and,
thus ConditionR) holds.

Condition (C) and Condition (R) provide us accurate sufficient hypotheses for geodesic
connectedness, as the following two theorems show. (For the sake of completeness, we also
state the result on connection by causal geodesics, already contained in [17, Theorems 3.3
and 3.7].

Theorem 1. Let (I x F, g/ = —dr? + f?g) be a GRW space—time with weakly convex

fiber (F, g). Then

1. Two pointszg = (10, x0), 2o = (4, X4), To < Tg are chronologically(resp. causally
related if and only iffr?f*1 > dr(xo0, xp) (resp > dr(xo, xp)) and, in this case, they
can be joined with at least one timelikesp. non-spacelilgeodesic

2. If Condition (C) or Condition (R) holds then the GRW space-time is geodesically
connected

Whenthe fiber is strongly convex, Condition (C) or Condition (R) becomes also hecessary.
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Theorem 2. Let(I x F, g/ = —dr?+ f2g) be a GRW space—time with strongly convex

fiber (F, g). Then

1. Eachtwo causally related points can be joined with exactlyoaeessarily non-spacelike
geodesic

2. The GRW space-time is geodesically connected if and only if either Con@iar
Condition(R) holds

From its proof, the naturality of the strong convexity assumption is clear. However, we
discuss below the proof of Theorem 2, what happens if just weak convexity is assumed.
As a consequence of our technique, we also obtain the following result on multiplicity.

Theorem 3. Let (I x F, g/ = —dr? + f?g) be a GRW space—time with weakly convex
fiber (F, g) and assume that either Conditi¢A) or Condition(B) with d,,, d; (if defined
equal to infinity, holds

Then there exist a natural surjective map between geodesics connggtingto, xo),
7o = (4. x5) € I x F and F-geodesics connecting andx;,.

Moreover, if(F, g) is complete and F is not contractible in itself then agyz; € I x F
can be joined by means of infinitely many spacelike geodesics. If the correspagdigg
are not conjugate iiF, g), then there are at most finitely many causal geodesics connecting
20, 29N 1 x F.

Remark. From results in SectioB, it will be clear that to impose the non-conjugacy of
xo, X as above is less restrictive than to impose the non-conjugagy, of. On the other
hand, the completeness of the fiber in Thedd&an be replaced for a convexity assumption
of the Cauchy boundar].

4. Proof of theorems

Consider a GRW space—tinié x F, —dr? + f2g) with weakly convex fibe(F, g).
For fixedzg € I put

m,:lnf{

‘EE[‘Co,b)}, ml=|nf{

L i ] (15)
f2() 20" € (@. 70 }

Lemma 4. Using the notatior{11), the function in D
by 1 -1/2
-2
|1 <—2—D) . b=bu(D)
w0 f

v o /1 -1/2
(resp /f* (ﬁ_D) , a*za*(D)>

with values in0, co] is continuous when D varies iim,., 1/f2(ro)) (resp.(my, 1/f2(ro))).
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Proof. We will check that every convergent sequer{@k}keN, DF — D>®, D> ¢
(my, 1/f%(10)) satlsflesf f 2(1/f2 - Db=1/2 f ¥ 721/ £2 — D®)~Y2 (the case
with a, is analogous). We can consider the followmg possibilities:

1. If (d/dr)1/f2|s # O then the sequence of intervalg [b%) converges totp, b2°)
and the integrands converge uniformly ag,[b3° — 8] for § > 0 small, which implies
the convergence of the integrals itp[b3° — §]. Thus, the result follows because the
integrals on §2° — 8, b2°] goes to zero whes — O.

2. If (d/dt)1/f?|,e = O then the uniform convergence gf-2(1/f2 — D¥)~Y/2 to

f~2(1/f? — D*)~Y? on compact subsets ofd, b>°) implies thatfrl::’if‘z(l/f2 —
Dk)71/2 — 00 = frlfcf72(1/f2_ DOO)*l/Z. O

Recall that the integrals not necessarily vary continuously wheam,., m;.
In what follows we will use the function (K) defined in Remark 1, and follow the
notation:t™ = t(K7), t+t = 1 (K ™).

Lemma 5. Consider(tg, xo) € I x F andx, € F such thatd(xo, x;)) = L > 0. The
functiont(K) is continuous on its domai®. Moreover, ifd/dr|t=ml/f2(r) = O then
7(K) can be continuously extendedko= 0 by 7 (0) = 0.

As a consequence,[ik —, K] C D then we can conne¢to, xo) with [7~, 7] x {x{}
(or[tF, 77 x {xg}).

Proof. Firstly, we will check that every convergent sequefk®},cn, K" — K> > 0
(< 0 analogous)K", K> € D for all n, satisfies that” — 7°°, wheret"” = t(K"),
7% = 7(K*°). Assume firstk > # 0, then

1. If (d/d7)1/f2|pe o # O, then easily — a2, b" — b, so the proof follows from
Lemma 4.

2. If (d/d)1/f?pe = O then, asf: f~2(1/f% — D®)~2 = oo, we haver™ < b
and the uniform convergence of the integrand on a compactget® + 8] (§ > 0
small) proves the result.

3. Ifb° = bthenagain®™ < bandthe resultfollows fromthe convergence ay f *°+5].
The remaining cases follow from combinations of the previous ones.

Now, consider the case th&at>* = 0 € D and (necessarily()d/dr)1/f2|f0 # 0. Then
it is easy to check that Lemma 4 can be extende®te- 1/72(zg), which implies the
continuity oft at 0.

So, we have just to prove that(ltﬂ/dr)l/f2|,0 = 0, thent (K) can be continuously ex-
tended ast(0) = to. For fixede > 0, the limit of fm“ ~2(1/f2 — D)~V2
and [ _f=2(1/f? — D)~/ (for the values ofD where they are well defined) are

T0—€

whenD  1/f%(tg) (and, thusk — 0), from which the result follows. 0

Lemma 6. If K+ > 0 (resp.K~ < 0) belongs to the domai® of 7 (K) butK+ —e > 0
(resp.K~ + ¢ < 0) for somee > 0, does not belong, then we can connégt xo) with
(a, T%] x {xo} (resp.[t ™, b) x {x{}) by means of geodesics wikhe (K —¢, K*] (resp.
Kel[K~ K™ +¢).
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Proof. Reasoning fok +, definekKg = inf{K < KT :[K,KT] € D}.As0< Kg < K™,
the fact thatKg is the infimum implies thab, (Do) # b where Dg = 1/f2(z0) — Ko.
Therefore, limk\ g, 7(K) = a (otherwise, it would contradict that is the infimum
again) and the result follows from the first assertion in Lemma 5. O

Lemma 7. If the domainD containsK* > 0 and K~ < 0, and the inequalityr~ <
t holds, then we can connegto, xo) with, at least[z—, t*] x {xp} by choosingk e
[K—, K]

Proof. If 7 is defined in K—, K] then Lemma 5 can be applied. Otherwise, A&t
(K~, K*) be such thaKy ¢ D. If, say Ko > 0 Lemma 6 can be applied #6™. O

Now, a first result on geodesic connectedness can be stated.

Lemma 8. A GRW space—tim@ x F, —dr?+ f2g) with weakly convex fibeiF, g) and
satisfying Conditior{A) is geodesically connected

Proof. Let (1o, x0), (g, xg) € I x F, L = d(xo, xp), L > 0. We consider the following

cases according to the valuesmf, m, in (15):

1. Casem;,m, < 1/f%(t). Then fj;*f—z(l/fz —m) M2 = oo, [Of2(1/f? -
m;)~Y2 = coand, thus, thereexial, < 1~ < 19 < t+ < b, such tha]frg+f—2(1/f2—
mp)"Y2 =L, [T f72(1/f2—m;)~Y? = L; so(r0, x0) can be joined withr-, x(). By
using Lemma 7 we can conne@b, xo) with [t~ 7] x {xp} takingK € [K~, K*].
Moreover, fixede > 0 such thatt™ + ¢ < b (resp.t~ — e > a) the limit of
f:{;”rsf‘z(l/f2 — D)~Y2 (resp.[™ _f2(1/f% — D)~Y?) is greater tharL when
D — m, (resp.D — my;) and the limit is 0 whenD — —o0; so (1o, xg) can be
connected with(t+ + ¢, xp) and(t~ — €, xp). Therefore, we can also connéeg, xo)
with [zF,b) x {x(} and(a, 7] x {x{} taking K € [KT,00) andK € (—o0, K],
respectively. In particulafro, xo), (), x;) can be joined.

2. Casen; = m, = 1/f?(zp). Assume, sayo < 1, thenffoﬁ3f*2(1/f2 — D)2 goesto
0if D - —oo andtoco if D 7 1/f?(10). Therefore, there exigh* < 1/f?(tg) such
thatfrf)(/)f—z(l/f2 — D*)~Y2 = I and the proof is over.

3. Casem; = 1/f%(10) andm, < 1/f2%(w0) (the remaining case is analogous). If, for
certaing > 0, [°f~2(1/f? —m; — 8)~%2 > L then we can follow an argument as
in (1). Otherwise, let* be such thag[f;f_z(l/f2 —m,)" Y2 = L. Fixede > 0,

the limit of frz++€f*2(1/f2 — D)"Y2is 0 whenD — —oo and it is greater thai
whenD — m,; thus, we can connecty, xo) With (z+ + ¢, x¢) and, therefore, with
[tT, b) x {x{} by means of geodesics witti € [K T, c0). Finally, from Lemma 6, we
can also connectryo, xo) with (a, 71] x {x(} takingK € (0, K *]. O

Lemma 9. A GRW space—tim@ x F, —dt2+ f2g) with weakly convex fibeiF, g) and
satisfying Conditior{B) is geodesically connected
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Proof. Let (0, x0). (74, xg) € I x F, L = d(xo., x{), L > 0 be. Firstly, suppose the case

by -1/2 7 —1/2
[roGaem)en [r(hom) e
0 . ay

m, =mp,m =mgand 2, >L,2d, > L.
Note that

1
> Max{m,, mp}, @an
f?(w0) ¢
and we consider first that this inequality is strict. Then, for fixed O such that+6§ < 1o, 7}
andro, 7y < b — 8, there exist O< K} < 1/f?(z0) — mj, andm, — 1/f%(10) < K& < 0
such thatr (K3) > b — 6 andr(Ké) < a + §; recall that, otherwise, say

by (1 —-1/2
Z/b_gf (F_D> < L < 2d,
by 1 N\ L2 b 1 =172
= 2limsup / f‘2<——D> —Zf f‘z(——mb)
Doy ( b—s f? b—s f?
for all D > my (with b,(D) > b — §), which is a contradiction becau§"§75f‘2(l/f2 -
mb)_1/2 > 0.

So, the geodesics correspondingkt§ and K§ join (zo, x0) With (¢, x) and (7, x0)s
wherer” = t(K}), 7! = t(K}). FromLemma7, we can connécg, xo) with [z, 7"] x {x}}
taking K € [K., K{]and, thus, the connectednesg af, xo) with (zy, x;) is obtained.

If (17) holds with equality, then because of (16) we hayge# my, (saym, > my), and
K = 0 does not belong to the domaihof t(K). Reasoning as abo&™ € D, K+ > 0
is found, and the result follows from Lemma 6.

Finally, the remaining cases (where not necessarily both inequalities (16) hold) are com-
binations of this one and the cases in Lemma 8. O

Now, we are ready to prove our main result on connectedness. The proof of (2) in Theorem
1 is the consequence of Propositions 1 and 2.

Proposition 1. Let(I x F, —dt? + f2g) be a GRW space—time with weakly convex fiber
(F, g) and satisfying ConditioC). Then it is geodesically connected

Proof. Let (w0, x0), (74, xp) € I x F, L = d(xo, x{), L > 0 be. Suppose

~1/2 -1/2
[ore(Eem) en [ s
0 Qs

mg =m; < m, =my, 2d, < L < diam(F), 2d, > L andd;, > i, (from Lemma 9 this is
the only relevant case to study). As > i, there existD; < m,, such that

0 1 -1/2 b 1 -1/2
[(ra(-e) w2 (m-0) <<t
Ax Ay
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On the other hand, asi2 > L for D, < D7 near enough te;; we have

T —-1/2 b 1/2
[[r(fme) + [ (fmrs) -

Therefore, the domaif® of 7(K) containsk, = D), — 1/f2(10) but notk; = D] —
1/£2(t0). From Lemma 6(to, xo) can be connected with (K3), b) x {x,}. ChooseK" =
D" —1/f%(1) € [K5, K1) such thatr (K") > b — 6 for § small. As 2/, > L, there exist
D!, m, < D' < D" such thatr (K') < a + & (K! = D' — 1/f%(10)). Thus, the result
follows from Lemma 7. O

Proposition 2. Let(I x F, —dr2 + f2g) be a GRW space-time with weakly convex fiber
(F, g) and satisfying ConditiofR). Then it is geodesically connected

Proof. We will use systematically that ib is close enough te: andD > m thenK+ =

1/f%(10) — D(> 0) andK~ = D — 1/f?(10)(< 0) satisfy [ ~, K*] c D; thus, Lemma

5 can be claimed. Letro, xo), (ty. xy) € I x F, L = d(xo, xp), L > 0, and consider the

following two cases:

1. Suppose’ (t0) < L < r!(t0), [ (t0) < L < I (o) for certainn, n’ > 0. Fixe > 0
such thatz 4+ € < ) < b — €. Then for someD!, D} close tom, chosen such that
m < D] < Dy, we have

*<D) 1/2 b—e 1/2
[ ) )
11— 1] ax (D) f

b*(DV) -1/2 by (DY) -1/2
[ ) [ ) o
-] Jrg f b—e S

(18)

ifn>1,or

b—e 1 -1/2
2 <— - D{) <L,

0
by(D)) 1 12 pbu(D)) 1 ~1/2
f2 (— - D’) +/ 2 (— - D’) > L, (19)
/‘;0 f2 b—e f2 !

if n = 0. Reasoning similarly to the left, we obtain analog(bljsDé, withm < Df <
D!. From Lemma 4, there exi®", D!, with D! < D" < D!, D! < D! < D! such
thatt(K") > b — €, 1(K!) < a + €, whereK” = (=1)"(1/f%(r0) — D"), K! =
(—1)"~X(1/f?(w0) — D'). Therefore, as + ¢ < t) < b — ¢, the connectedness of
(70, x0) With (7, xp) is @ consequence of Lemma 5.

2. Suppose nowl. < r(to)(< (1)) and L < [2(wo)(< [(0)). As we saw

in Definition 4 and the comments below(to) = j;’;f—z(l/f2 —m)~Y2 (analogously
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for 19), thus, there exist > 0,a + € < 1, < b — € such that

_ -1/2 -1/2
hef_2<i2—m> / > L, /TO f_2<i2—m> / > L.
70 f a+e f

But the limit offrl;'6 f=2(1/f? - D)~Y2whenD — —o0is 0, thus we obtaiD” < m
such that[r’;'fffz(l/f2 — D")Y2 = L. So, takingk” = 1/f?%(19) — D" (> 0), we
obtaint(K”) = b — €. Analogously, there exisk! < 0 such thatr (K!) = a + e.

Therefore, we obtain the connectednesérgf xo) with (z;, x) from Lemma 5 again.
The remaining cases are combinations of the previous ones. O

Proof of Theorem 2. For (1) assume thab = (0. x0), 25 = (73, x) are causally related
andtgp < 7. From Theorem 1 there exist a non-spacelike geodesic/ — I x F,
y () = ((¢), yr(2)) joining them. As(F, g) is strongly convex, necessarily

/ . (F - Do) = d(x0, xp) (20)
70

being Do = g(dy/dr, dy/dr) < 0. But the integralff()fl)f*z(l/f2 — D)~ Y2 s strictly
increasing withD for D < 0; thus,y is the only causal geodesic joining and z;,.
Moreover, whenD > 0 the integral (possibly under Convention 1) is bigger than when
D = 0; so, no spacelike geodesic joisandz,.

In order to prove (2) assume that neither Condition (C) nor Condition (R) hold and
consider the following cases. In the first three cases we will assume that Condition (R) is
not applicable, and Condition (C) does not holdbaat « would be analogous). Recall
that, from Lemma 3, Af2 is decreasing a; in the first caseb is a non-unique absolute
minimum; in the second is the unique absolute minimum, which is simpler; in the third,

b is not an absolute minimum, which compels to use properly the definition ¢f the
fourth case, Condition (R) is applicable, but it does not hold (neither does Condition (C),
see Remark 2).

1. Assume thab is a relative minimum of 1f? andm = m; is reached at a point,, €

(a,b). As 2d;, < diam(F), chooseL > 0 such that 2, < L < diam(F). From this

choice, there existy > 1, close tob such that

by (D) 1 -1/2 1
-2 - -
2/1’ f <f2 D) <L VDEe <m f2(16)> . (22)

0

As 1, is @ minimum,(d/dr)1/f?|,, = 0. Thus, there exist} near enough té such
that

o L1 -1/2 1
2 2(=-D L VD ,—— . 22
a*(D)f <f2 ) - “\" 2 (22)

Now, taking anyrp > Max({zg, r(l)}, ) > 0 andxo, xy With d(xo, x() = L, itis clear
that (21) and (22) forbid to conne¢to, xo), (7, x;) by means of a geodesic.
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2. Assume thak is a relative minimumm = m, < my and ¥ £2(t) > mforallt € (a, b).
Then, necessarilyd < diam(F). Choose agaim; such that (21) holds. Recall that we
can impose now, additionally, thg] is the strict minimum of 1f2on(a, 75]- So, clearly
(7§, x0) and(zy, xg) cannot be joined by a geodesicrff < 5 andd (xo, xp) = L.

3. Assume thak is a relative minimum angh < my. Asd, < i there existré such that

7 1 -1/2
2/ F2 <—2 — D) > 2d, +2¢ VD € (m, mp) (23)
ax(D) f
for somee > 0 such that @, + 2¢ < diam(F). From the continuity stated in Lemma
4, there exist > 0 such that inequality (23) holds if the right member is replaced by
L =2d, +eforall D € (m, my + §].

Now, as in case (1) we can takg(= tj) > 7} with 1/f%(z0) < my;, + 6 and such
that (21) holds for allD. Thus, for anyry > 70, we cannot connedto, xo), (tg. x;) by
means of a geodesic,df(xo, x5) = L.

4. Assume that Af2(t) > m for t € (a, b) andm, = m;, = m. Suppose that Condition
(R) is not fulfilled by, say the's, i.e.r! (z0) < r;”l(ro) with ! (tp) < diam(F) for
certainn > 0 andrg € / (see the comments below Definition 4). Hix= d(xo, xp)(<
diam(F)) with r' (o) < L < rl."+1(t0). These inequalities imply for > 1 that there
exist ane > 0 such that

Ay 1 71/2 b—e 1 71/2
lim inf / 2 (—2 - D) + [ <—2 - D) > L,
DN\m | Cpkp—1y Yo f ay f

by 1 ~1/2 by 1 -1/2
lim sup / f2 <_2_D) —1—/ f2<—2—D> <L
D\m | vk Jro S b—e f

fork =n + 1,k = n and, thus for alk > n + 1 andk’ < n. But this implies that for
somes > Owithb*(D=m+38) >b—€cif m < D <m+ §then

a 1 -1/2 b—e 1 -1/2
[(Fe) o+ () e
k-1 Jro f as f

(24)

fb* (1 -1/2 b 01 -1/2
f- <——D> +/ - (——D) <L (25)
vk ] Yo f2 b—e fz

fork > n+ 1,k’ < n (there are analogous inequalities whes: 0). Thereforgtp, xo)
cannot be geodesically connected wit}, xp) if 75 > b — €. O

Discussion. Next, we will see what happens if we assume just weak convexity in Theorem

2 and Condition (R) is applicable (a similar study could be done if Condition (C) is appli-
cable instead). As a consequence, we will give a proof of the (well known) non-geodesic
connectedness of de Sitter space—time. It should be noticed that previous proofs use the
high degree of symmetry of this space—time [7,20]. In our proof we will see what is the
exact role of this symmetry.
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Fix zo = (70, x0) € I x F, x{ € F, xo # x; ande > 0. Putrl.(?e(to), ry (70), etc. equal
to the quantities in Definition 4 but without taking the linait—> 0 (the extension of this
new definition wher = —oo orb = oo is obvious, see de Sitter space—time below). Now,
consider

Ac = Upzolr!' (10), ! (10)] U [0, 2. (z0)],
Be = Up=oll!(10). I (10)] U [0, 12 (o)1,
and also
L = {length (yr)|pF is an F-geodesic which joinsyg and xp} C (0, 00).
From the proof of Theorem 2¢ can be joined withd + €, b — €g] x {xp} if
LN AN B # )

for somee < €g. Moreover, it is also clear thaf cannot be joined with the points in
(a,a+ eo) x {xp} U (b — €0, b) x {xp} if

LNAy=0., LNBg,="0. (26)

For de Sitter space—-timé,= R, f = cosh and the fiber is the usual sphere of radius
1. Recall that when the intervdlis not bounded, we must replase- ¢ (if b = oco) and
—(a+¢€) (if a = —o0) by M > 0, and the limit — 0 must be replaced byf — oc. Take
z0 = (0, x); by Definition 4 M — oo) we have

(0 =r(0) = 37 +nmw =1}(0) = [{ (0). (27)
For M = 0, the new definitiomsl.?6 (0, r{(0) (¢ = oc) read

Q) =nw =110,  r'(0)=(+Dr=I.0). (28)
Now, choosex; as the antipodal point of, i.e.,

L={2n+Drn=0,1,2,...}.

From the two limit cases (27) and (28), it is clear that condition (26) is fulfilled for any

M > 0. Sozp cannot be joined by means of a geodesic Witho, 0) x {xp}U(0, 00) x {xp}.
Summing up, for de Sitter space-time, the “symmetries” of its warping function are

essential in order to have enough “holes’Ag, and B, where all the elements df lie.

But the only relevant symmetry of the fiber is that there are two paints; such that the

lengths of the geodesics which join them has a constant gap. In our case, thigyapd2

the symmetries of fit well whend (xo, xg) = 7.

Proof of Theorem 3. For the first assertion consider &rgeodesigr (r), r € [0, L] with
L =longyr, yr(0) = xo andyr (L) = x;. From our hypotheses, if/¥2 reaches a relative
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minimum atb (resp.a) andb™(m,) = b (resp.a*(m;) = a) then

b* (my) 1 —1/2
either / f2 (— —m,) >L or 2dp>1L
T

0

. 1 —1/2
resp either / f2 <— —m,) ~L or 2d,>LJ|. (29)

a*(mp)

As we checked in Lemmas 8 and 9, inequalities (29) allow us to obtain a geodesic joining
zo andzg with component on the fiber a reparameterizatiogofr) (recall that in these
lemmasyr (r) was always taken as a minimizirgrgeodesic, but the minimizing property
was used just to ensure that (29) holds). Itis straightforward to check that these inequalities
also hold ifb*(m,) < b ora < a*(m;), because the corresponding integral is then infinite.

If (F,g) is complete andF is not contractible then, for fixedo, x; € F, there exist
a sequence of geodesig¢g' (r) joining xo andx; with diverging lengthsL,, (see, e.g.
[15, Theorem 2.11.9]). Ley™(r) = (¢ (1), yf (1)) be the geodesic connecting, z;
constructed fronpy! (r), and assumep < 7. If ¥ (¢) is causal, then necessarily (7) and

(8) hold with L. = L,,. But in this caseD < 0 and, thusL,, < frgél/f(< o0). As the
sequencéL,,} is diverging, all the geodesics but a finite number are spacelike.
The last assertion is also a direct consequence of the fact that the length& gftegeo-

desics corresponding to causal geodesics are boundﬁgb)gg‘, and Lemma 10. O

Lemma 10. If (M, g) is acomplete Riemannian manifold apdg € M are not conjugate,
then for all L > 0 there exist at most finitely many geodesics with length smaller than L
connecting p and g

Proof. Otherwise, from the compactness{of € 7,M : |v| < L}, we would obtain a
sequencév, },eN, vn — V0, Un, Vo € Tp M such that exp(v,) = exp,(vo) = ¢ for all n.
Then,vo would be a singular point of expand thus, andg would be conjugate for the
geodesi¢y (1) = exp,(r - vo), 1 € R, which is a contradiction. O

Remark. Inthe proof of Theorer®, we have used that, for a complete Riemannian manifold
which is non-contractible in itself, infinitely many geodesics joining p and q exist, and there
is a sequence of them with diverging lengths. So, in this case, La@isays that if p,

g are not conjugate then any sequence of geodesics joining them have diverging lengths.
In particular, the number of geodesics joining two non-conjugate points of a complete
Riemannian manifold must be enumerable

5. Conjugate points and Morse-type inequalities

In order to prove results on conjugate points, it seems more natural to consider all the
geodesics obtained by varying a fixed one with the same speg8d, we will drop previous
normalizatiore = 1 for geodesics non-tangentto the base. The only modification in previous
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formulae which we will have to bear in mind is that now (5) reads

dr 1,
—_— = — otToft. (30)
d /c
So the definition o in (7) must be changed to
e\ L2
he = e Jef2 (—D + ﬁ) . (31)

Theorem 4. Letzo = (0. x0), 2o = (1, X) be two points of the GRW space-titdex

F, —dr2 + f2g) with n-dimensional fibefF, g). Assume thay (t) = (t(¢), yr(t)) is

a geodesic which joins them, wiih: (r) being the reparameterization of a non-constant

F-geodesigr, and thatzo, z; are conjugate along with multiplicitym € {0,1, ..., n}

(m = 0 means not conjugale

1. Thenxo, x; are conjugate points of multiplicity:” € {m,m — 1} along yr (at the
corresponding points of the domairin particular, if zo, z; are non-conjugate then so
are xo and.x.

2. If y is a causal geodesi@r any geodesic without zeroesdn/dr) thenm’ = m.

Remark.

1. The following direct computation shows that even in the excludedjgase xo = x
(Pr is constany, the pointszo, z; are not conjugate. Thus, this case can be included
in Theorem4 with the convention “a constant geodesig has no conjugate points”.
Assumerp < 7 and consider the geodesjdr) = (¢, xo), t € [70, 7g]. LEtE;(2), i €
{1, ..., n} be orthonormal parallel fields along which span the orthogonal tp’. A
vector fieldJ (r) = ) ;a; (t)E;(t) alongy is a Jacobi field if and only if each function
a; (¢) is a solution of the Sturm differential equation

'@
Q)

But, clearly f(¢) is also a strictly positive solution d32). Thus, ifa(zg) = 0 and
a’(w0) # 0thena(r) cannot vanish orizo, 7}], as required
2. Moreover, for anyr > 1, replace(32) by the spectral equatiofsee[2])

a’(t) — %a(r) +Ara(t) =0, (33)
Ar € R with boundary conditiona(tg) = a(r) = 0. A simple Sturm argument shows
thatif 7 < 7 theni; > Az, i.e. the spectral flowk(r) = A, is decreasing. This also
holds for the static bidimensional caggee Sectio®), and should be compared with
[2]. At any case, the main result [] can be reobtained, as we will see in Sectin
independently, it is also reobtained[ih3], in the general setting of geodesics admitting
a timelike Jacobi field

a’(t) a(t)=0, 1€ [, (32)
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Proof of Theorem 4.

Stepl. For any geodesig, m’ > m — 1.

Considervg, v1, ..., v, € Tyo(I x F) such thatV = Sparvy, ..., v,}, whereV =
ker((dexgo)vo) and exp, (vo) = zo- From semi-Riemannian Gauss Lemma [16, Section
5.1],vo and eachy; are orthogonal, sfuvo, . . ., v, } are linearly independent (recall that if
vo is lightlike then agig andv; are not collinear then eaehis spacelike). Moreover, con-
sider the usual projection on the fibeg; asy is not on the base, th&dr r),,vo # 0 and
say{(dmr);,vo, (AF)ov1, - .., (ArF)zoum—1} are linearly independent. Sdzr).,vo
is parallel to the initial velocity of -, and we have just to prove that there exist a direction
of conjugacy ofyr betweenxo, x; in each planéV; = Spar{(drr)_,vo, (d7F),vi} S
TyFfori=1...,m—-1

Defininge; (s) = vo + sv;, we have dds|;—o exp, («; (s)) = 0 and, thus

d
o . 7 o eXp,(«i(s)) = 0. (34)

There exist a non-constant continuous cuve) € W;, i =1, ..., m — 1 such that

exp,, (Bi(s)) = mF o exp (i(s)). (35)
In fact, we take
drr (i (s))
i () = wi(s) ———————, 36
Prs) = i @] (36)

where; (s) is the length of the pregeodesie> 7r o exp, (7 «;(s)) on [0, 1].

Recall that(dr ), vo is parallel tog; (0) = wo, and we had to prove thadl exp, ) w,
restricted taW; is singular. Otherwisegj; (s) would be smooth around 0 from (35). From
(36), 0# B;(0) € W;, and from (34) and (35);(0) € ker(d exp,,)w,, & contradiction.

Step2. If y is causal them’ > m.

We will check that ify is not tangent to the base but it is causal (or any geodesic
without zeroes in the derivative of the timelike component) then. . ., v, } are tangent
to the fiber. SA(drr)4vo, (d7F)ov1, ..., (drF) v, ) are linearly independent and the
result follows as in the previous step.

From the hypotheses,

1/2
z—:=e(—0+#> £0 (37)
for all t, whereD = g/ (dy/dr, dy/dr) ande = (f* o 1)g(dyr/dt, dyr/dr). Consider
the usual projection on the basg, we will check that(dz).,(v;) = 0. Leta;(s) €
T;,(I x F) be a curve such that; (0) = vo, d/ds|;—0;(s) = v;, as above, and we
also imposeg/ (e (s), ai(s)) = g/ (vo, vo) for all 5. Puty(s,1) = exp, (1 ai(s)) =
(5 (1), yr, (1)) (thus D (s) = g/ (vo, vo)). If dr; (v;) = d/ds|s=0 /(0) # O then, ash =
—7/(0)? + ¢(s)/f?(10) is constant, we obtain thayds |;—o c(s) # 0. Now, including in
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(37) the dependence arwe have

75 (1) de .
/fs(o) (=D + c(s)/f2(x))V/2 =5

and deriving with respect tg, we obtain gds|;—o 3 (1) # 0. Therefore, dds|;—o 7 o
exp,, (i (s)) # 0 which contradicts that; is a direction of conjugacy.
Step3.m > m'.
Letxo, x; be conjugate points of multiplicity:” along theF-geodesig’r and suppose
y(0) = z0, (1) = zg. If Span{wy, ..., w,/} = ker((d eXP,) wo) where exp,(wo) =
x4, consider a curves; (s) in T, F such thats; (0) = wo, d/ds|;—o0 Bi(s) = w; and

1Bi(s)] = |wo| for all s, i = 1,...,m'. Definew;(s) € T,(I x F) such that
(dm 7)o (@i (s)) = dr/dt(0) and
Ve Bi(s)

(A7) 2o (ai(5)) = (38)

f2(w0) |wol

For eachs, the geodesic on the GRW space—tipg, t) = exp, (t ai(s)) = (zs(1), yF,
(1)) satisfy thatyr, (1) = expy, (rs (1) Bi(s)) wherer,(¢) is an increasing function, because
vF, (1) is a pregeodesic on the fib&r But from (4) and (30)r,(¢) is determined just by
c¢(s) = candD(s) = D, sor,(t) is independent of, i.e.r,(¢t) = r(t). Computing for

s = 0, itis clear that ~1(1) = 1 thus, necessaribyr o exp, (ai(s)) = expy, (Bi(s)) for
alls. Asw; € ker((d exp,,)u,), we have

mF o exp(a;i(s)) = 0. (39)
s=0
On the other hand, from the relation between the parametanslr for y (s, ¢) given by
(31), we have

ds

75(5)

-1/2
x/Ef_z(r) <—D+%> dr = |wg| (=length of yg, for all s),
(40)

70

where the integral is possibly considered under Convention 1. But the integrand and the
right-hand side in (40) are independent ghusry(s) = n; oexp,, (@i(s)) is constant, and
d exp., (e (5)) = 0 (41)
—_ JT] O a;i(s)) = U
ds s=0 ! pZO
From (39) and (41); = d/ds|;—o «; (s) yields a direction of conjugacy of for anyi =
1,...,m’, and itis clear from the construction that thesedirections are independent.
O

Remark. Note that the following case may hold: the paigthas a conjugate point;
along the F-geodesigr, but if we consider any geodesicemanating frontg = (o, xo)
which projects oryr, the reparameterizationr of pr does not reach untik; and, so,
there is no conjugate point of zg alongy which projects ontar1. That is, the geodesic
y “escapes” at the extremes of | befofg reachesx;. This possibility may happen, e.g.
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when the space—time is extendible through the extremes of I. But it does not necessarily
happen because of this reason; in fact, de Sitter space-time, vwhereosh,is a simple
counterexamplérecall that if fcbf = oo all null geodesics are future-compleie8] and

the GRW space—time not only is not extendible through b as a GRW space—time butalso itis
not extendible as a space—time; compare all this discussion@dttp. 73])When the fiber

is weakly convex, the necessary and sufficient conditions to ensure that, for any ggodesic
non-tangent to the basey will cover all y are the “non-escape” equalities

¢ 1 ~1/2 b 1 -1/2
PG [ e

for certainc € (a, b) (se€g[8, Lemmad]). Recall that this condition implies ConditiqA)
and, so the space-time will be geodesically connected

Summing up we get the following corollary.

Corollary 1. Considera GRW space-time with weakly convex fiber where the “non-escape”
equalitieq42)hold. Then the space—time is geodesically connected and any causal geodesic
y(t) = (z(t), yr(t)) starting atzo has conjugate points in bijective correspondefice
cluding multiplicitie9 with the conjugate points of the inextendible geodgsie) obtained

from the projectionyx(¢) on the fiber

Remark. This result allows to extend, in our ambient, the ones by Uhlenj2dg¢kor null
geodesics to all causal geodesics. For instance, normalize all causal geoghesiemngent
to the bas such thatc = (f* o 1)g(dyr/dr, dyr/dr) = 1 and chooseD < 0 all
future-pointing causal geodesics startingzat= (1o, xo) and having associated the fixed
value of D = g/ (dy/dr, dy/dr), are in bijective correspondence with the F-geodesics
starting atxg, being the conjugate points preserved. So

Under the assumptions of Corollafly and fixedD < 0, if xo andx1 are not conjugate

the loop space of F is homotopic to a cell complex constructed with a cell for each causal

D-geodesigwith ¢ = 1) fromzg to the lineL,, = {(z, x1) : ¢ € I} with the dimension of

the cell equal to the index of the D-geodesic.
Recall that in[21], the conformal invariance of null conjugate points is explicitly used,
but this invariance does not hold for timelike geodedioglimensional anti-de Sitter
space—time, which is globally conformal to a strip in Lorentz—Minkowski space—time, is
a simple examp)ethis makes our approach necessary

Theorem 4 and equalities (42) can be also combined to yield Morse relations as follows.
Fix two non-conjugate pointsy = (7o, x0), 2z = (7. x5) and a fieldC. Let Q(zo, zg)
(resp.Q(xo, xg)) be the space of continuous paths joinigzg in I x F (resp.xo, xg in
F). LetP,, ., (1) (resp.PxO,x() (1)) be the Poincaré polynomial &f(zo, zg) (resp£2 (xo, x)),

.e. P, . (1) is the formal series

’PZo,zb(t) = Bo + B1t + ﬂztz 4o,
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wherep, is thegth Betti number 0f2(zo, z) for homology with coefficients iiiC, g, =
dim H4(2(zo. zg), K). CIearIy,on’zé (t) = PXO,X& (). Let

Mgy () =ao+ant +ast’+--- (resp M, (1) = ao+art +at®+--+)

be the Morse polynomials @b, z;, (respxo, xg), i.€.a, (respay) is the number of geodesics
joining zo andzy, (respxo andx) with Morse index equal tg, where the Morse index of a
geodesic connecting two fixed non-conjugate points is the sum of the indexes of conjugate
points to the first point along the geodesic. Then, under the hypotheses of Theorems 3 and
4, we have

ag < ag+agy1 Vg >0, (43)
ap > 0= ag > 0, ag>0=>a;-1+a;, >0 Vg=>1 (44)

In particular, if the polynomials are finite themzo_,zé(t) > My (D), V1 = 1. But if
(F, g) is a complete Riemannian manifold, then the well-known Morse relations imply the
existence of a formal polynomial with non-negative integer coeffici@its such that

Mgy (1) = Py (1) + 1+ ) Q). (45)

Remark. In general, it is not true thaty > ap or a,_1 + a, > a,. Recall that many
geodesics in the GRW space—time conneciyig, may project on the same pregeodesic
of F. A simple counterexample of this is de Sitter space-ivith a straightforward modi-
fication, one can also get that hypotheses in The@eame fulfilled). So, inequalitieg44)
cannot be improved

Summing up we get the following corollary.

Corollary 2. In a globally hyperbolic GRW space—time satisfying either Cond{#ror
Condition(B) with d,, dj, (if defined equal to infinity the Morse inequaliti€d3) and (44)
(with (45)) hold.

As a consequence, if the Morse polynomtalzo,zé(t) is finite then, for each pair of
non-conjugate pointsy, z; there exist a polynomial(r) with non-negative integer coeffi-
cients and computable from the fiber such that

Mooy () = P 0 (1) + 1+ 0)Q(0), Vi = 1.

6. Applications

6.1. Two-dimensional case

Next, we will particularize previous results to bidimensional GRW space—times with
strongly convex fiber (necessarily an inter¢al dx?)). Recall that in this case the opposite
metric—g/ is also Lorentzian and, in fact, it corresponds to a static (standard) space—time.
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The chronological relation can be now extended for non-causally related points, just defining
that two points are spacelike related if they are chronologically relatedér In fact, we
will simplify our terminology with the following (re-)definition.

Definition 5. Consider a bidimensional GRW (or static) space—time. Two p@igisto),
(). x¢) are spacelike (resp. timelike, lightlike) related if and only if there exists a spacelike
(resp. timelike, lightlike with non-vanishing derivative) curve joining them.

From a direct computation (see also [17, Theorem 3.3 and Lemma 3.5]) we get the
following lemma.

Lemma 11. Given(zo, xo), (4, x) € (I x J, —dt? + f2dx?), they are
1. spacelike related if and only yf;éf*1 < d(x0, x);

2. lightlike related if and only ifféﬂf*l = d(xo, x{);

3. timelike related if and only if;éf—l > d(xo, x{).

Now, as a consequence of Lemma 11 and Theorem 2 we get the following corollary.

Corollary 3. In a GRW space—tim@ x J, —dt2 + f2dx?)

1. If (zo0, x0), (. x) are timelike(resp. lightlikeg related then there exist a unique geodesic
(necessarily timelikéresp. lightlikg) which joins them

2. All (o, x0), (tg, xp) Which are spacelike related can be joined by a geodgsicessarily
spacelikg if and only if Condition(C) or Condition(R) holds

From Theorem 4 and the fact that there are no conjugate points on a manifold of dimension
1, we get the following corollary.

Corollary4. InaGRW space—tim@ x J, —dr2+ f2dx2) nogeodesig (1) = (z(t), yr(r))
without zeroes imlz /dr have conjugate points
In particular, causal geodesics are free of conjugate points

Now, consider a bidimensional static space—time, Giyx J C R? g5 = dy? —
£2(y) dx?), wheregs can be seen as the reversed metric of a GRW space—time. Summarizing
the conclusions of Lemma 11 and Corollaries 3 and 4, the following extension of Theorem
1.1in [5] can be given (see also [13, Proposition 6.6]).

Corollary 5. Given(yo, x0), (g, xg) in the static space—time x J C R?, gs = dy? —

f2(y)dx?), they are

1. Spacelike related if and only yf};voéf—l > d(xo, xp). In this case there exist a unique
geodesic which joins them; this geodesic is necessarily spacelike and without conjugate
points

2. Lightlike related if and only ilﬂéf‘l = d(xo, xp). In this case there exist a unique
geodesic which joins them; this geodesic is necessarily lightlike and without conjugate
points
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3. Timelike related if and only ify’(’)éf‘1 < d(xo, xp). All points which are timelike re-
lated can be joined by a geodegitecessarily timelikeif and only if Condition(C) or
Condition(R) holds

Remark. In fact, no geodesic of the static space—time without zeroes in the derivative of
its spacelike component has conjugate points. Anti-de-Sitter space—time is an example of
static space—time where all the timelike geodesics have conjugate points. Moreover, it is
not geodesically connected

6.2. Conditions on curvature

As commented in Section 1, it is natural to assume, for a realistic GRW space—time that
Ric(d;, 8,) > 0, and it is straightforward to check that this condition is equivalerit'tec 0
(see [16, Corollary 7.43]). Recall that in this case/lim ; ' and lim;_,, » f always exist.
So taking into account the cases in Table 1 we see that Condition (A) always holds except
whenb < oo (resp.a > —oo) and f/(b) > 0 (resp.f’(a) < 0). In this case, although
the GRW space—time is not geodesically connected, it is possible to extend the warping
function f throughb (resp.a) obtaining thus an extended space-time, which is also GRW.
The GRW space—time will be calleédextendibleif whenever an extreme af is finite,
then f cannot be extended continuously at these extremes to a realwaiu@. It seems
clear that from a physical viewpoint just inextendible GRW space—-times must be taken into
account.

Therefore, Theorems 1 and 3 are applicable to these inextendible GRW space-times,
yielding the points (1) and (4) in Corollary 6 (the other two are included for the sake of
completeness).

Corollary 6. An inextendible GRW space—time WRIt(9;, ;) > 0 and weakly convex

fiber satisfies the following

1. Each two causally related points can be joined with one non-spacelike geodesic, which
is unique if the fiber is strongly convex

2. The space—time is geodesically connected. Moreover, each@tdp x F C I x F,
a < & < b < b with the restricted metric is geodesically connected if and only if
f'@ = 0andf'(b) <0 (e f'@: f'(b) <0).

3. There exist a natural surjective map between geodesics connegting (o, xo),
7o = (t§.xy) € I x F and F-geodesics connecting and x;. Under this map,
when the geodesic connecting and z; is causal then the multiplicity of its con-
jugate points is equal to the multiplicity for the corresponding geodesic connecting
X0, Xg-

4. If (F, g) is complete and F is not contractible in itself, then agyz;, € 1 x F can be
joined by means of infinitely many spacelike geodesias, K are not conjugate there
are at most finitely many causal geodesics connecting.them

For the last assertion (2), recall that it is straightforward from Theorem 2 under strongly
convexity. But, from the proof of this theorem, this assumption can be dropped because
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f” < 0 (recall that then Conditions (A), (B), (C) are equivalent and Condition (R) is not
applicable).
Finally, we give a further consequence of equalities (42).

Corollary 7. Consider a GRW space—tinig x F, g/) which is globally hyperbolic and
satisfies the non-escape equalii¢8),and fixDg < 0.Ifany geodesig () = (t(¢), yr(t))
starting atzo = (7o, xp) and having associated values D, ¢ equallg, 1, respectively, is
free of conjugate points then the fiber can be covered topological® blyeingn = dim F.

Proof. Under this assumption thé-geodesics starting at have no conjugate points and
so, asF is complete, exp : Ty, F = R" — F is a surjective local diffeomorphism. Taking
the pull-back metric o, F, a local isometry with a domain complete manifold (and so a
Riemannian covering) is obtained. O

Remark. The assumption on conjugate points wheg = 0 holds if in the future ofg

we haveR (X, Y, Y, X) < Owhenever X, Y span a degenerate plane on a lightlike geodesic
starting atzo (see[3, Theoreml0.77]); moreover, the non-escape inequalit{d®) can be
reduced to

/ac ft =00, /Cb =0, (46)

when just null geodesics are considered, so we reolpgdinTheorent.3]in our ambient
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