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Abstract

Given two points of a generalized Robertson–Walker space–time, the existence, multiplicity and
causal character of geodesics connecting them is characterized. Conjugate points of such geodesics
are related to conjugate points of geodesics on the fiber, and Morse-type relations are obtained.
Applications to bidimensional space–times and to GRW space–times satisfying the timelike con-
vergence condition are also found. © 2000 Elsevier Science B.V. All rights reserved.
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1. Introduction

Recently, geodesic connectedness of Lorentzian manifolds has been widely studied, and
some related questions appear which invoke great interest; among them are (i) how to
determine the existence, multiplicity and causal character of geodesics connecting two
points, and (ii) how to study their conjugate points and to find Morse-type relations. These
questions have been answered, totally or partially, for stationary or splitting manifolds (see,
e.g., [4,11,13,15,21]). Our purpose is to answer them totally in the class of generalized
Robertson–Walker (GRW) space–times.

GRW space–times (see Section 2 for precise definitions) are warped products(I ×
F, gf = −dt2 + f 2g) which generalize Robertson–Walker ones because no assump-
tion on their fiber is done, and they have interesting properties from both the mathematical

∗ Corresponding author. Tel.:+34-958-246396; fax:+34-958-243281.
E-mail address:sanchezm@goliat.ugr.es (M. Sánchez).

0393-0440/00/$ – see front matter © 2000 Elsevier Science B.V. All rights reserved.
PII: S0393-0440(00)00027-9
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and the physical point of view [1,17–19]. GRW space–times are also particular cases ofmul-
tiwarped space–times, whose geodesic connectedness has been recently studied by using a
topological method [8]. They can be also seen as splitting type manifolds, studied in [15,
Chapter 8], or as a type of Reissner–Nordström intermediate space–times, studied in [9,10].
Nevertheless, we will see here that the results for GRW space–times can be obtained in a
simpler approach, and are sharper. In fact, we will develop the following direct point of view.

Given a geodesicγ (t) = (τ (t), γF (t)) of the GRW space–time, the componentγF is a
pregeodesic of its fiber. So, if dτ/dt does not vanish, we can consider the reparameterization
γF (τ), andγ will cross a pointz0 = (τ0, x0) if and only if x0 = γF (τ0). This simple fact
yields a result on connectedness by timelike and causal geodesics [17, Theorems 3.3 and 3.7].
For spacelike geodesics, the reparameterizationγF (τ)may fail. This problem can be skipped
sometimes by simple arguments on continuity [18, Theorem 3.2], but we will study it system-
atically in order to solve completely the problem of geodesic connectedness. Moreover, this
will also be the key to solve the other related problems (multiplicity, conjugate points, etc.).

After some preliminaries in Section 2, we state the conditions for geodesic connectedness
in Section 3. In fact, we give three Conditions (A), (B), (C) of increasing generality, and
a fourth Condition (R) which covers a residual case. All these conditions are imposed on
the warping functionf ; on the fiber, we assume just a weak condition on convexity (each
two pointsx0, x

′
0 can be joined by a minimizingF -geodesicγ̂F ), which is known to be

completely natural (see [17, Remark 3.2]). These conditions are somewhat cumbersome,
because they yield not only sufficient but also necessary hypotheses for geodesic connect-
edness; however, they yield very simple sufficient conditions. For example (Lemmas 3 and
9), if the GRW space–time is not geodesically connected then f must admit a limit at some
extreme of the intervalI = (a, b); if this extreme is b(resp. a) thenf ′ must be strictly
positive(resp. negative) in a non-empty subinterval(b̄, b) ⊆ (a, b) (resp.(a, ā) ⊆ (a, b))
(moreover, in this case Table 1 can be used). Condition (A) summarizes in which cases the
warping functionf has a “good behavior” at the extremes ofI = (a, b) in order to obtain

Table 1
If f is continuously extendible tob, when Condition (A) is satisfied atb

b < ∞ b = ∞
limτ→b f (τ ) Condition (A) limτ→b f (τ ) Condition (A)

1 0 Yes 0 Yes

2 α ∈ R, α 6= 0 f ′ not extendible tob No information α ∈ R, α 6= 0 Yes
limτ→b f ′ = β ∈ [−∞, 0) Yes
limτ→b f ′ = β ∈ (0, ∞] Noa

limτ→b f ′ = 0 and
f ′′ bounded in [b − ε, b)

Yes

3 ∞ No ∞,
∫ b

c

1

f
= ∞ Yes

∞,
∫ b

c

1

f
< ∞ Nob

aCondition (C) does not hold either. No information on Condition (R), if applicable.
bNo information on Condition (C) or (R).
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geodesic connectedness. This condition is equal to the one obtained in [8] for multiwarped
space–times; nevertheless, we will reprove it because a simpler proof is now available and
the ideas in this proof will be used in the following more general conditions. Condition (B)
takes into account that when the diameter of the fiber is finite, even a “not so good” behavior
of f at an extreme, sayb, may allow the following situation: a fixed pointz0 = (τ0, x0)

can be connected toz′
0 = (τ ′

0, x
′
0), whereτ ′

0 is close enough tob, by means of a geodesic
γ (t) = (τ (t), γF (t)) such thatτ(t) points out fromτ0 to b and, perhaps “bounces” close
to b. Condition (C) takes into account that even when Condition (B) does not hold, the
following situation in the previous case may hold: a geodesic which points out fromτ0

to the extremea, bounces close toa and comes back towardsb, may connectz0 andz′
0.

Condition (C) is shown to be the more general condition for geodesic connectedness, ex-
cept in the case: if the limit off at both extremesa, b is equal to the supremum off , and
this supremum is not reached atI , thenz0 andz′

0 perhaps could be joined by geodesics
which bounce many times close toa andb. Examples of the strict implications between
the different conditions are provided. In Section 3, we also state our results on existence of
connecting geodesics, which are proven in Section 4:
1. Either Condition (C) or Condition (R) is sufficient for geodesic connectedness (Theorem

1).
2. If we assume a stronger condition of convexity on the fiber (each geodesicγ̂F above

is assumed to be the only geodesic which connectsx0, x
′
0), then one of the two Condi-

tions (C) or (R) is also necessary (Theorem 2). The necessity of this stronger convexity
assumption is also discussed.

3. Under Condition (A) (or, even in some cases (B)), if the topology ofF is not trivial then
each two pointsz0 = (τ0, x0), z′

0 = (τ ′
0, x

′
0) can be joined by infinitely many spacelike

geodesics (Theorem 3).
4. For causal geodesics: (i) ifz0 andz′

0 are causally related then there exist a causal geodesic
joining them (this result was previously proven in [17]), (ii) ifz0 andz′

0 are not conjugate
(or even if justx0 andx′

0 are not conjugate which will be shown to be less restrictive),
then there are at most finitely many timelike geodesics joining them (Theorem 3), and
(iii) if the fiber is strongly convex, then there exist at most one connecting causal geodesic
(Theorem 2).
This machinery is used in Section 5 to obtain a precise relation between the conjugate

points of a geodesic inI × F and its projection onF (Theorem 4, Corollary 1). From this
result, Morse-type relations which relate the topology of the space of curves joining two
non-conjugate points and the Morse indexes of the geodesics joining them are obtained (see
Corollary 2 and the discussion above it). We remark that, Morse indexes are defined here
in the geometrical sense “sum of the orders of conjugate points” because, for any spacelike
geodesic, its index form is positive definite and negative definite on infinite-dimensional
subspaces (if dimF > 1). About this kind of problem, the following previous references
should be taken into account. Conjugate points of null geodesics in globally hyperbolic
space–times were studied by Uhlenbeck [21], and we also make some remarks in Section
5 relating our results. In a general setting, conjugate points on spacelike geodesics were
studied by Helfer [14], who also considered the Maslov index of a geodesic. He showed that
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these conjugate points may have very different properties to conjugate points for Riemannian
manifolds (instability, non-isolation, etc.), but these problems can be skipped in our study.
In [6] (see also [15, Section 5]), an attempt to obtain a Morse theory for standard stationary
manifolds is carried out, and in [13], an index theorem (in terms of the Maslov index)
applicable in particular to stationary manifolds is obtained. On the other hand, some recent
papers studied Morse theory for timelike or lightlike geodesics joining a point and a timelike
curve (see [12] and references therein). Typically, these results are stated for strongly causal
space–times (including all GRW space–times), and they need an assumption oncoercivity
which does not necessarily hold under our hypotheses. It is not difficult to check that our
results are also applicable to face this problem.

In Section 6, we particularize the previous results to two cases. First, Section 6.1, when the
fiber is also an interval ofR. In this bidimensional case, the opposite metric−gf is standard
static, and we reobtain and extend the theorem in [5]. We recall that the proof in this reference
is obtained by a completely different method, which relies on the function spectral flow on
a geodesic (see Remark (2) in Theorem 4 for noteworthy comments about this approach).
Finally, in Section 6.2, we consider the case Ric(∂t , ∂t ) ≥ 0. This condition is natural from
a physical point of view. In fact, the stronger condition Ric(v, v) ≥ 0 for all timelike v

is called the timelike convergence condition, and says that gravity, on an average, attracts.
Condition Ric(∂t , ∂t ) ≥ 0 is equivalent tof ′′ ≤ 0, and this inequality implies Condition
(A) if f cannot be continuously extended to positive values at any extreme. Corollary 6
summarizes our results in this case. We finish with an extension, in our ambient, of a result
in [21, Corollary 7].

2. Preliminaries

Let (F, g) be a Riemannian manifold,(I, −dτ2) an open interval ofR with I = (a, b)

and its usual metric reversed, andf > 0 a smooth function onI . A GRW space–time with
base(I, −dτ2), fiber (F, g) and warping functionf > 0 is the product manifoldI × F

endowed with the Lorentz metric

gf = −π∗
I dτ2 + (f ◦ πI )

2π∗
F g ≡ −dτ2 + f 2g, (1)

whereπI andπF are the natural projections ofI × F ontoI andF , respectively, and will
be omitted when there is no possibility of confusion.

A Riemannian manifold will be called weakly convex if any two of its points can be
joined by a geodesic which minimize the distance; if, in addition this geodesic is the only
one which joins the two points it will be called strongly convex (recall that these names do
not coincide with those in [17]). Of course, if the Riemannian manifold(F, g) is complete
then it is weakly convex by the Hopf–Rinow theorem, but the converse is not true (a detailed
study of when a (incomplete) Riemannian manifold is weakly convex can be seen in [2]). It
is well known that Cartan–Hadamard manifolds (i.e. complete, simply connected and with
non-positive curvature) are strongly convex and, of course, so are locally all Riemannian
manifolds (more results on strong convexity can be seen in [11]). We will denote byd
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the distance onF canonically associated to the Riemannian metricg, and by diam(F ) its
diameter (the supremum, possibly infinity, of thed-distances between points ofF ).

Given a vectorX tangent toI × F we will say thatX is timelike (resp. lightlike, causal,
spacelike) ifgf (X, X) < 0 (resp.= 0, ≤ 0, > 0); the timelike vector field∂/∂τ fixes
the canonical future orientation inI × F . Givenz, z′ ∈ I × F , we will say that they are
causally (resp. chronologically) related if they can be joined (z with z′ or vice versa) by a
future-pointing non-spacelike (resp. timelike) piecewise smooth curve.

Let γ : J → I × F , γ (t) = (τ (t), γF (t)) be a (smooth) curve on the intervalJ . It is
well known thatγ is a geodesic with respect togf if and only if

d2τ

dt2
= − c

f 3 ◦ τ

df

dτ
◦ τ, (2)

D

dt

dγF

dt
= − 2

f ◦ τ

d(f ◦ τ)

dt

dγF

dt
(3)

on J , whereD/dt denotes the covariant derivative associated toγF andc the constant
(f 4 ◦ τ)g(dγF /dt, dγF /dt). From (2),

dτ

dt
= ε

(
−D + c

f 2 ◦ τ

)1/2

(4)

with D = gf (dγ /dt, dγ /dt) andε ∈ {±1}. Note that, ifc = 0 then d2τ/dt2 ≡ 0, i.e. the
geodesics on the baseI are naturally lifted to geodesics of the GRW space–time as in any
warped product. For all the other geodesics, it is natural to normalize choosing them with
c = 1. This normalization will be always chosen except in Section 5 where the formulae
will be explicitly taken with a different normalization. All geodesics will also be assumed
inextendible, i.e. with a maximal domain.

By Eq. (3), each (non-constant)γF is a pregeodesic of(F, g), so if we consider the
reparameterization̂γF (r) = γF (t (r)), where

dt

dr
= f 2 ◦ τ ◦ t (5)

(in a maximal domain) we obtain thatγ̂F is a geodesic of(F, g) being

g

(
dγ̂F

dr
,

dγ̂F

dr

)
= 1. (6)

From now on, we will assume that(F, g) is weakly convex for any result where geodesic
connectedness is involved; such assumption has proven to be completely natural [8,17,18].
In fact, as an immediate consequence of (2) and (3) we get the following lemma.

Lemma 1. There exists a geodesic joiningz0 = (τ0, x0) and z′
0 = (τ ′

0, x
′
0), τ0 ≤ τ ′

0 if
τ0 = τ ′

0 and(d/dτ)1/f 2(τ0) = 0.

Now, the case when the geodesicγ̂F can be reparameterized by usingτ ∈ (a∗, b∗) as a
parameter (for some interval(a∗, b∗)) will be considered. Putting̃γ (τ) ≡ γ̂ ◦ r(τ ) we have
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dγ̃ /dτ = hε
D(τ)dγ̂ /dr wherehε

D ≡ hε : (a∗, b∗) ⊆ I → R is defined as

hε = εf −2
(

−D + 1

f 2

)−1/2

, (7)

and ε = ±1. When this reparameterization can be done in such a way that ifτ goes
from τ0 to τ ′

0, the integral ofhε is exactly equal to the distance betweenx0, x
′
0 ∈ F ,

then a geodesic joining(τ0, x0) and (τ ′
0, x

′
0) can be constructed, yielding the following

lemma.

Lemma 2. There exists a geodesic connectingz0 = (τ0, x0) andz′
0 = (τ ′

0, x
′
0), τ0 ≤ τ ′

0
if there is a constantD ∈ R (D = gf (dγ /dt, dγ /dt)) such that
1. either1/f 2(τ0) 6= D or if this equality holds then(d/dτ)1/f 2(τ0) 6= 0, and
2. the maximal domain(a∗, b∗) of hε includes(τ0, τ

′
0), and∫ τ ′

0

τ0

hε = L, (8)

whereL = d(x0, x
′
0).

(In this caseε = 1.) When the reparameterizationγ̃ (τ ) fails then the points where the
denominator ofhε goes to zero must be specially taken into account. Firstly, we will specify
the maximal domain ofhε . Fix D ∈ R such that 1/f 2(τ0) ≥ D and consider the subsets

A+ =
{
τ ∈ (a, b) : τ0 ≤ τ,

1

f 2(τ )
= D

}
∪ {b}, (9)

A− =
{
τ ∈ (a, b) : τ0 ≥ τ,

1

f 2(τ )
= D

}
∪ {a}. (10)

Definea∗ ≡ a∗(D), b∗ ≡ b∗(D) by

If
d

dτ

1

f 2
(τ0) > 0, then b∗ = min(A+ − {τ0}), a∗ = max(A−),

If
d

dτ

1

f 2
(τ0) < 0, then b∗ = min(A+), a∗ = max(A− − {τ0}),

If
d

dτ

1

f 2
(τ0) = 0, then b∗ = min(A+), a∗ = max(A−).

(11)

Now, it is not difficult to check that Lemma 2 also holds if we assume the following
convention for the integral (8).

Convention 1. From now on integral (8) will be understood in the following generalized
sense: forε = 1, if

∫ b∗
τ0

hε=1 ≥ L, then the first member of (8) denotes the usual integral and

we will also follow the notation+[0]
∫ τ ′

0
τ0

hε ; otherwise and ifb∗ 6= b, we can follow integrat-

ing by reversing the sense of integration (recallτ ′
0 ≤ b∗) and, if

∫ b∗
τ0

hε=1 − ∫ a∗
b∗ hε=1 ≥ L,

then the first member of (8) means
∫ b∗
τ0

hε=1−∫ τ ′
0

b∗ hε=1 which we denote by+[1]
∫ τ ′

0
τ0

hε . If this
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last inequality does not hold anda∗ 6= a, then the procedure must follow reversing the sense
of integration (τ ′

0 ≥ a∗) as many times as necessary in the obvious way. Analogously, when

ε = −1, first member of (8) means either
∫ τ ′

0
τ0

hε=−1 ≡−[0]
∫ τ ′

0
τ0

hε (in this case ifτ0 < τ ′
0

the integral is negative; so equality (8) cannot hold) or
∫ a∗
τ0

hε=−1 − ∫ τ ′
0

a∗ hε=−1 ≡−[1]
∫ τ ′

0
τ0

hε

or
∫ a∗
τ0

hε=−1 − ∫ b∗
a∗ hε=−1 + ∫ τ ′

0
b∗ hε=−1 ≡−[2]

∫ τ ′
0

τ0
hε , etc.

Remark 1. From (7), fixedε ∈ {±1}, for eachD ∈ R we have at most oneτ ′
0 such that

Eq. (8) holds, possibly under Convention1. Let us introduce the parameterK ≡ K(D, ε)

by means ofK = 1/f 2(τ0) − D if ε = 1, K = D − 1/f 2(τ0) if ε = −1. So, for fixed L, a
functionτ(K) = τ ′

0 is defined for K in a certain domainD ofR.

3. Conditions for geodesic connectedness

Now, we are ready to establish four conditions (Conditions (A), (B), (C), and (R)) on the
warping functionf which, independently, ensure the geodesic connectedness of the GRW
space–time (Lemmas 8 and 9 and Theorem 1). Roughly, Condition (A) implies not only
the geodesic connectedness but also that every(τ0, x0) ∈ I × F can be joined with any
point(τ ′

0, x
′
0) with τ ′

0 close enough tob (resp.a) by means of a geodesic(τ (t), γF (t)) with
dτ/dt > 0 (resp.< 0) nearτ ′

0. Condition (B) is weaker than Condition (A), and implies not
only geodesic connectedness but also that if Condition (A) does not hold atb (resp.a) then
any(τ0, x0) ∈ I × F can be joined with a point(τ ′

0, x
′
0) with τ ′

0 close enough tob (resp.a)
by means of a geodesic withε = 1 (resp.ε = −1), and perhaps using Convention 1 once
close toτ ′

0. Condition (C) is the most general condition for geodesic connectedness, which
just drops a residual case covered by Condition (R).

Definition 1. Let f : (a, b) → R be a smooth function and letmb = lim inf τ→b f (τ )

(resp.ma = lim inf τ→a f (τ )). The extremeb (resp.a) is a (strict) relative minimum off
if
1. whenb < ∞ (resp.a > −∞), there existsε > 0 such that if 0< ε′ < ε, then

f (b − ε′) > mb (resp.f (a + ε′) > ma);
2. whenb = ∞ (resp.a = −∞), there existM > 0 such that ifM ′ > M thenf (M ′) > mb

(resp.f (−M ′) > ma).

Condition (A) for f . Either 1/f 2 does not reach atb (resp.a) a relative minimum in the
sense of Definition 1 or, otherwise∫ b

c

f −2
(

1

f 2
− mb

)−1/2

= ∞
(

resp.
∫ c

a

f −2
(

1

f 2
− ma

)−1/2

= ∞
)

for somec ∈ (a, b) close tob (resp.a), i.e. c ∈ (b − ε, b) (resp.c ∈ (a, a + ε)) if the
extremeb (resp.a) is finite orc > M (resp.c < −M) if this extreme is infinite, whereε
andM are given in Definition 1.
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The following definition is needed to state Condition (B). Recall that this definition is
applicable just when Condition (A) does not hold.

Definition 2. Assume that the function 1/f 2 reaches atb (resp. ata) a relative minimum
such that

∫ b

c
f −2(1/f 2 − mb)

−1/2 < ∞ (resp.
∫ c

a
f −2(1/f 2 − ma)

−1/2 < ∞) for some
c ∈ (a, b). Then we define

db = lim sup
D→mb

(∫ b∗

c

f −2
(

1

f 2
− D

)−1/2
)

−
∫ b

c

f −2
(

1

f 2
− mb

)−1/2

(
resp. da = lim sup

D→ma

(∫ c

a∗
f −2

(
1

f 2
− D

)−1/2
)

−
∫ c

a

f −2
(

1

f 2
− ma

)−1/2
)

,

whereb∗ ≡ b∗[D] (resp.a∗ ≡ a∗[D]) is given by (11).

Remark.
1. Note that the uniform convergence off −2(1/f 2 − D)−1/2 on compact subsets of(a, b)

when D varies, ensures thatdb andda are independent of c.
2. It is easy to check thatdb, da ≥ 0.As whenD → mb thenb∗ → b, where b is a relative

minimum, it is clear that if there were continuity of the integrals with D atmb (resp.ma)
thendb = 0 (resp.da = 0). But as we will see in the example below, there exist cases in
which the inequalities are strict, anddb, da can reach even the value∞.

Condition (B) for f . Either 1/f 2 does not reach atb (resp.a) a relative minimum or,
otherwise, it verifies either

∫ b

c
f −2(1/f 2−mb)

−1/2 = ∞ for somec ∈ (a, b)as in Condition
(A), or 2db ≥ diam(F ) ∈ (0, ∞] (resp. either

∫ c

a
f −2(1/f 2 − ma)

−1/2 = ∞ or 2da ≥
diam(F ) ∈ (0, ∞]).

Obviously Condition (A) implies Condition (B), but the converse is not true as the fol-
lowing example shows.

Example. Consider the function 1/g2(τ ) = 1 − τ defined on(0, 1). Modify this function
smoothly on{In}n∈N, In = (an, bn), an, bn → 1, an < bn < an+1 in such a way that the
modified function 1/f 2 satisfies 1/f 2 > 1/g2 on In ∀n ∈ N and∫ bn∗

0
f −2

(
1

f 2
− Dn

)−1/2

≥ 2L, (12)

where
∫ 1

0 f −1 = L andDn is chosen decreasing to 0 and such thatbn∗ = 1
2(an + bn); this

is possible by taking 1/f 2 with derivative small enough in(an,
1
2(an + bn)) (e.g. if this

derivative vanishes at12(an + bn) the integral (12) will be infinite). Then, asdb ≥ L, it is
sufficient to take(F, g) such that 2db ≥ diam(F ) (see Fig. 1).

Lemma 3. If Condition(B) does not hold at b(resp. a) then there existlimτ→b f ∈ (0, ∞]
(resp.limτ→a f ∈ (0, ∞]) andf ′ > 0 on(b− δ, b) or (M, ∞) (resp.f ′ < 0 on(a, a + δ)

or (−∞, −M)) for someδ > 0 small orM > 0 big.
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Fig. 1. Condition (B) is satisfied but not Condition (A).

Proof. Reasoning forb < ∞, assume that Condition (B) does not hold atb. Then 1/f 2

reaches a relative minimum atb and
∫ b

τ0
f −2(1/f 2 − mb)

−1/2 < ∞ for certainτ0 ∈ I (see
Definition 1). It is sufficient to prove thatf ′ > 0 on (b − δ, b). Otherwise, there exist a
sequence{τn}n∈N, τ0 < τn ∈ I , τn → b such thatf ′(τn) ≤ 0. If we choose a maximumτn

of f on [τ0, τ n], thenf ′(τn) = 0 for n big enough. Thus,
∫ b∗
τ0

f −2(1/f 2 − Dn)
−1/2 = ∞

for Dn = 1/f 2(τn). The choice ofτn implies thatDn → mb, which contradicts that
db < ∞. �

Remark. If Condition (B) does not hold at b(resp. a) then limτ→b 1/f 2 = mb (resp.
limτ→a 1/f 2 = ma).

From Lemma 3, it is natural to construct Table 1, where it is assumed thatf is contin-
uously extendible tob (the table fora would be analogous, but reversing the sign of the
correspondingβ).
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The following definition, necessary to state Condition (C), is applicable when Condition
(B) does not hold.

Definition 3. Assume that the function 1/f 2 reaches atb (resp.a) a relative minimum such
that 2db < diam(F ) andm < mb (resp. 2da < diam(F ) andm < ma) wherem is the
infimum value of 1/f 2 in (a, b). Chooseτ0 ∈ (b − ε, b) or τ0 > M (resp.τ0 ∈ (a, a + ε)

or τ0 < −M) whereε, M are given in Definition 1. Then we define

ib = inf
D∈(m,mb]

{∫ b

a∗
f −2

(
1

f 2
− D

)−1/2
}

(
resp. ia = inf

D∈(m,ma ]

{∫ b∗

a

f −2
(

1

f 2
− D

)−1/2
})

,

whereb∗ ≡ b∗[D] (resp.a∗ ≡ a∗[D]) is given by (11).

Note that this definition is independent of the choice ofτ0.

Condition (C). Either 1/f 2 does not reach atb (resp.a) a relative minimum or, otherwise
either

∫ b

c
f −2(1/f 2 − mb)

−1/2 = ∞ for somec ∈ (a, b) as in Condition (A), or 2db ≥
diam(F ), or db ≥ ib (resp. either

∫ c

a
f −2(1/f 2 − ma)

−1/2 = ∞ or 2da ≥ diam(F ) or
da ≥ ia).

Again Condition (B) implies obviously Condition (C), and a counterexample to the
converse is shown.

Example. Let 1/f 2 be the function in the previous example. We have that the smooth
function f̄ defined on(−1/N, 1) such that limτ→−1/N 1/f̄ 2 = 0, 1/f̄ 2(0) = N + 1 and
1/f̄ 2(τ ) = N + 1/f 2(τ ) for τ ∈ (0, 1) satisfies thatib ≤ db for N big enough. Then it is
sufficient to take(F, g) such that 2db < diam(F ) (see Fig. 2).

For the remaining residual case, we need the following definition, where Convention 1
is explicitly used.

Definition 4. Assume 1/f 2 > m for τ ∈ (a, b) andma = mb = m. Then we define

rn
i (τ0) = lim

ε↘0
lim inf
D↘m

{
(−1)n[n−1]

∫ a∗

τ0

f −2
(

1

f 2
− D

)−1/2

+
∫ b−ε

a∗
f −2

(
1

f 2
− D

)−1/2
}

,
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Fig. 2. Condition (C) is satisfied but not Condition (B).

rn
s (τ0) = lim

ε↘0
lim sup
D↘m

{
(−1)n[n]

∫ b∗

τ0

f −2
(

1

f 2
− D

)−1/2

+
∫ b∗

b−ε

f −2
(

1

f 2
− D

)−1/2
}

,

lni (τ0) = lim
ε↘0

lim inf
D↘m

{
(−1)n−1[n−1]

∫ b∗

τ0

f −2
(

1

f 2
− D

)−1/2

+
∫ b∗

a+ε

f −2
(

1

f 2
− D

)−1/2
}

,

lns (τ0) = lim
ε↘0

lim sup
D↘m

{
(−1)n−1[n]

∫ a∗

τ0

f −2
(

1

f 2
− D

)−1/2

+
∫ a+ε

a∗
f −2

(
1

f 2
− D

)−1/2
}

(13)
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for n ≥ 1, and

r0
i (τ0) = lim

ε↘0
lim inf
D↘m

{∫ b−ε

τ0

f −2
(

1

f 2
− D

)−1/2
}

,

r0
s (τ0) = lim

ε↘0
lim sup
D↘m

{∫ b∗

τ0

f −2
(

1

f 2
− D

)−1/2

+
∫ b∗

b−ε

f −2
(

1

f 2
− D

)−1/2
}

,

l0i (τ0) = lim
ε↘0

lim inf
D↘m

{∫ τ0

a+ε

f −2
(

1

f 2
− D

)−1/2
}

,

l0s (τ0) = lim
ε↘0

lim sup
D↘m

{∫ τ0

a∗
f −2

(
1

f 2
− D

)−1/2

+
∫ a+ε

a∗
f −2

(
1

f 2
− D

)−1/2
}

.

(14)
If some extreme ofI is infinite, previous definition must be understood in the natural way
(see comments above formula (27)).

Recall thatr0
i (τ0) = ∫ b

τ0
f −2(1/f 2 − m)−1/2 (resp.l0i (τ0) = ∫ τ0

a
f −2(1/f 2 − m)−1/2).

It is also clear thatrn
i (τ0) ≤ rn

s (τ0) (resp.lni (τ0) ≤ lns (τ0)) and the sequence{rn
i (τ0)}n∈N is

strictly increasing to∞ (resp. replacingi or r by s or l).

Condition (R). Assume 1/f 2 > m for τ ∈ (a, b) andma = mb = m, then [r0
i (τ0), diam

(F )] ⊆ ∪n≥0[rn
i (τ0), r

n
s (τ0)] and [l0i (τ0), diam(F )] ⊆ ∪n≥0[lni (τ0), l

n
s (τ0)] for every

τ0 ∈ I .

Remark 2. When1/f 2 > m for τ ∈ (a, b) andma = mb = m, it is clear that Condition
(C) holds if and only if Condition(B) holds; moreover, Condition(R) is less restrictive than
Condition(B). In fact, when Condition(A) holds thenr0

i (τ0) = ∞ = l0i (τ0) for all τ0 ∈ I ,
thus Condition(R) is automatically satisfied. When Condition(A) does not hold then if
2db ≥ diam(F ) (i.e. Condition(B) holds at b) thenr0

s (τ0) ≥ diam(F ) for all τ0 ∈ I (and,
thus Condition(R) holds).

Condition (C) and Condition (R) provide us accurate sufficient hypotheses for geodesic
connectedness, as the following two theorems show. (For the sake of completeness, we also
state the result on connection by causal geodesics, already contained in [17, Theorems 3.3
and 3.7].

Theorem 1. Let (I × F, gf = −dτ2 + f 2g) be a GRW space–time with weakly convex
fiber (F, g). Then
1. Two pointsz0 = (τ0, x0), z′

0 = (τ ′
0, x

′
0), τ0 < τ ′

0 are chronologically(resp. causally)

related if and only if
∫ τ ′

0
τ0

f −1 > dF (x0, x
′
0) (resp. ≥ dF (x0, x

′
0)) and, in this case, they

can be joined with at least one timelike(resp. non-spacelike) geodesic.
2. If Condition (C) or Condition (R) holds then the GRW space–time is geodesically

connected.

When the fiber is strongly convex, Condition (C) or Condition (R) becomes also necessary.
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Theorem 2. Let (I × F, gf = −dτ2 + f 2g) be a GRW space–time with strongly convex
fiber (F, g). Then
1. Each two causally related points can be joined with exactly one(necessarily non-spacelike)

geodesic.
2. The GRW space–time is geodesically connected if and only if either Condition(C) or

Condition(R) holds.

From its proof, the naturality of the strong convexity assumption is clear. However, we
discuss below the proof of Theorem 2, what happens if just weak convexity is assumed.

As a consequence of our technique, we also obtain the following result on multiplicity.

Theorem 3. Let (I × F, gf = −dτ2 + f 2g) be a GRW space–time with weakly convex
fiber (F, g) and assume that either Condition(A) or Condition(B) with da , db (if defined)
equal to infinity, holds.

Then there exist a natural surjective map between geodesics connectingz0 = (τ0, x0),
z′

0 = (τ ′
0, x

′
0) ∈ I × F and F-geodesics connectingx0 andx′

0.
Moreover, if(F, g) is complete and F is not contractible in itself then anyz0, z

′
0 ∈ I ×F

can be joined by means of infinitely many spacelike geodesics. If the correspondingx0, x
′
0

are not conjugate in(F, g), then there are at most finitely many causal geodesics connecting
z0, z

′
0 in I × F .

Remark. From results in Section5, it will be clear that to impose the non-conjugacy of
x0, x

′
0 as above is less restrictive than to impose the non-conjugacy ofz0, z

′
0. On the other

hand, the completeness of the fiber in Theorem3can be replaced for a convexity assumption
of the Cauchy boundary[2].

4. Proof of theorems

Consider a GRW space–time(I × F, −dτ2 + f 2g) with weakly convex fiber(F, g).
For fixedτ0 ∈ I put

mr = Inf

{
1

f 2(τ )

∣∣∣∣ τ ∈ [τ0, b)

}
, ml = Inf

{
1

f 2(τ )

∣∣∣∣ τ ∈ (a, τ0]

}
. (15)

Lemma 4. Using the notation(11), the function in D

∫ b∗

τ0

f −2
(

1

f 2
− D

)−1/2

, b∗ ≡ b∗(D)(
resp.

∫ τ0

a∗
f −2

(
1

f 2
− D

)−1/2

, a∗ ≡ a∗(D)

)

with values in(0, ∞] is continuous when D varies in(mr, 1/f 2(τ0)) (resp.(ml, 1/f 2(τ0))).
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Proof. We will check that every convergent sequence{Dk}k∈N, Dk → D∞, D∞ ∈
(mr, 1/f 2(τ0)) satisfies

∫ bk∗
τ0

f −2(1/f 2 − Dk)−1/2 → ∫ b∞∗
τ0

f −2(1/f 2 − D∞)−1/2 (the case
with a∗ is analogous). We can consider the following possibilities:
1. If (d/dτ)1/f 2|b∞∗ 6= 0 then the sequence of intervals [τ0, b

k∗) converges to [τ0, b
∞∗ )

and the integrands converge uniformly on [τ0, b
∞∗ − δ] for δ > 0 small, which implies

the convergence of the integrals in [τ0, b
∞∗ − δ]. Thus, the result follows because the

integrals on [b∞∗ − δ, b∞∗ ] goes to zero whenδ → 0.
2. If (d/dτ)1/f 2|b∞∗ = 0 then the uniform convergence off −2(1/f 2 − Dk)−1/2 to

f −2(1/f 2 − D∞)−1/2 on compact subsets of [τ0, b
∞∗ ) implies that

∫ bk∗
τ0

f −2(1/f 2 −
Dk)−1/2 → ∞ = ∫ b∞∗

τ0
f −2(1/f 2 − D∞)−1/2. �

Recall that the integrals not necessarily vary continuously whenD = mr, ml .
In what follows we will use the functionτ(K) defined in Remark 1, and follow the

notation:τ− = τ(K−), τ+ = τ(K+).

Lemma 5. Consider(τ0, x0) ∈ I × F and x′
0 ∈ F such thatd(x0, x

′
0) = L > 0. The

functionτ(K) is continuous on its domainD. Moreover, ifd/dτ |τ=τ01/f 2(τ ) = 0 then
τ(K) can be continuously extended toK = 0 by τ(0) = τ0.

As a consequence, if[K−, K+] ⊂ D then we can connect(τ0, x0) with [τ−, τ+] × {x′
0}

(or [τ+, τ−] × {x′
0}).

Proof. Firstly, we will check that every convergent sequence{Kn}n∈N, Kn → K∞ > 0
(< 0 analogous),Kn, K∞ ∈ D for all n, satisfies thatτn → τ∞, whereτn = τ(Kn),
τ∞ = τ(K∞). Assume firstK∞ 6= 0, then
1. If (d/dτ)1/f 2|b∞∗ ,a∞∗ 6= 0, then easilyan∗ → a∞∗ , bn∗ → b∞∗ , so the proof follows from

Lemma 4.
2. If (d/dτ)1/f 2|b∞∗ = 0 then, as

∫ b∞∗
τ0

f −2(1/f 2 − D∞)−1/2 = ∞, we haveτ∞ < b∞∗
and the uniform convergence of the integrand on a compact set [τ0, τ

∞ + δ] (δ > 0
small) proves the result.

3. If b∞∗ = b then againτ∞ < b and the result follows from the convergence on [τ0, τ
∞+δ].

The remaining cases follow from combinations of the previous ones.
Now, consider the case thatK∞ = 0 ∈ D and (necessarily)(d/dτ)1/f 2|τ0 6= 0. Then

it is easy to check that Lemma 4 can be extended toD = 1/f 2(τ0), which implies the
continuity ofτ at 0.

So, we have just to prove that if(d/dτ)1/f 2|τ0 = 0, thenτ(K) can be continuously ex-
tended asτ(0) = τ0. For fixed ε > 0, the limit of

∫ τ0+ε

τ0
f −2(1/f 2 − D)−1/2

and
∫ τ0
τ0−ε

f −2(1/f 2 − D)−1/2 (for the values ofD where they are well defined) are∞
whenD ↗ 1/f 2(τ0) (and, thus,K → 0), from which the result follows. �

Lemma 6. If K+ > 0 (resp.K− < 0) belongs to the domainD of τ(K) butK+ − ε ≥ 0
(resp.K− + ε ≤ 0) for someε > 0, does not belong, then we can connect(τ0, x0) with
(a, τ+] ×{x0} (resp.[τ−, b)×{x′

0}) by means of geodesics withK ∈ (K+ − ε, K+] (resp.
K ∈ [K−, K− + ε)).
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Proof. Reasoning forK+, defineK0 = inf {K ≤ K+ : [K, K+] ⊆ D}. As 0≤ K0 < K+,
the fact thatK0 is the infimum implies thatb∗(D0) 6= b whereD0 = 1/f 2(τ0) − K0.
Therefore, limK↘K0 τ(K) = a (otherwise, it would contradict thatK0 is the infimum
again) and the result follows from the first assertion in Lemma 5. �

Lemma 7. If the domainD containsK+ > 0 and K− < 0, and the inequalityτ− <

τ+ holds, then we can connect(τ0, x0) with, at least[τ−, τ+] × {x′
0} by choosingK ∈

[K−, K+].

Proof. If τ is defined in [K−, K+] then Lemma 5 can be applied. Otherwise, letK0 ∈
(K−, K+) be such thatK0 /∈ D. If, sayK0 ≥ 0 Lemma 6 can be applied toK+. �

Now, a first result on geodesic connectedness can be stated.

Lemma 8. A GRW space–time(I × F, −dτ2 + f 2g) with weakly convex fiber(F, g) and
satisfying Condition(A) is geodesically connected.

Proof. Let (τ0, x0), (τ
′
0, x

′
0) ∈ I × F , L = d(x0, x

′
0), L > 0. We consider the following

cases according to the values ofml, mr in (15):
1. Caseml, mr < 1/f 2(τ0). Then

∫ b∗
τ0

f −2(1/f 2 − mr)
−1/2 = ∞,

∫ τ0
a∗ f −2(1/f 2 −

ml)
−1/2 = ∞ and, thus, there exista∗ < τ− < τ0 < τ+ < b∗ such that

∫ τ+
τ0

f −2(1/f 2−
mr)

−1/2 = L,
∫ τ0
τ−f −2(1/f 2 −ml)

−1/2 = L; so(τ0, x0) can be joined with(τ±, x′
0). By

using Lemma 7 we can connect(τ0, x0) with [τ−, τ+] × {x′
0} takingK ∈ [K−, K+].

Moreover, fixedε > 0 such thatτ+ + ε < b (resp. τ− − ε > a) the limit of∫ τ++ε

τ0
f −2(1/f 2 − D)−1/2 (resp.

∫ τ0
τ−−ε

f −2(1/f 2 − D)−1/2) is greater thanL when
D → mr (resp.D → ml) and the limit is 0 whenD → −∞; so (τ0, x0) can be
connected with(τ+ + ε, x′

0) and(τ− − ε, x′
0). Therefore, we can also connect(τ0, x0)

with [τ+, b) × {x′
0} and (a, τ−] × {x′

0} taking K ∈ [K+, ∞) andK ∈ (−∞, K−],
respectively. In particular(τ0, x0), (τ ′

0, x
′
0) can be joined.

2. Caseml = mr = 1/f 2(τ0). Assume, sayτ0 < τ ′
0, then

∫ τ ′
0

τ0
f −2(1/f 2 − D)−1/2 goes to

0 if D → −∞ and to∞ if D ↗ 1/f 2(τ0). Therefore, there existD∗ < 1/f 2(τ0) such

that
∫ τ ′

0
τ0

f −2(1/f 2 − D∗)−1/2 = L and the proof is over.

3. Caseml = 1/f 2(τ0) andmr < 1/f 2(τ0) (the remaining case is analogous). If, for
certainδ > 0,

∫ τ0
a

f −2(1/f 2 − ml − δ)−1/2 > L then we can follow an argument as

in (1). Otherwise, letτ+ be such that
∫ τ+
τ0

f −2(1/f 2 − mr)
−1/2 = L. Fixed ε > 0,

the limit of
∫ τ++ε

τ0
f −2(1/f 2 − D)−1/2 is 0 whenD → −∞ and it is greater thanL

whenD → mr ; thus, we can connect(τ0, x0) with (τ+ + ε, x′
0) and, therefore, with

[τ+, b) × {x′
0} by means of geodesics withK ∈ [K+, ∞). Finally, from Lemma 6, we

can also connect(τ0, x0) with (a, τ+] × {x′
0} takingK ∈ (0, K+]. �

Lemma 9. A GRW space–time(I × F, −dτ2 + f 2g) with weakly convex fiber(F, g) and
satisfying Condition(B) is geodesically connected.
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Proof. Let (τ0, x0), (τ
′
0, x

′
0) ∈ I × F , L = d(x0, x

′
0), L > 0 be. Firstly, suppose the case∫ b∗

τ0

f −2
(

1

f 2
− mr

)−1/2

≤ L,

∫ τ0

a∗
f −2

(
1

f 2
− ml

)−1/2

≤ L, (16)

mr = mb, ml = ma and 2db ≥ L, 2da ≥ L.
Note that

1

f 2(τ0)
≥ Max{ma, mb}, (17)

and we consider first that this inequality is strict. Then, for fixedδ > 0 such thata+δ < τ0, τ
′
0

andτ0, τ
′
0 < b − δ, there exist 0< Kr

δ < 1/f 2(τ0) − mb andma − 1/f 2(τ0) < Kl
δ < 0

such thatτ(Kr
δ ) > b − δ andτ(Kl

δ) < a + δ; recall that, otherwise, say

2
∫ b∗

b−δ

f −2
(

1

f 2
− D

)−1/2

< L ≤ 2db

= 2 lim sup
D̂→mb

(∫ b∗

b−δ

f −2
(

1

f 2
− D̂

)−1/2
)

− 2
∫ b

b−δ

f −2
(

1

f 2
− mb

)−1/2

for all D > mb (with b∗(D) > b − δ), which is a contradiction because
∫ b

b−δ
f −2(1/f 2 −

mb)
−1/2 > 0.

So, the geodesics corresponding toKr
δ andKl

δ join (τ0, x0) with (τ r , x′
0) and(τ l, x′

0),
whereτ r = τ(Kr

δ ),τ l = τ(Kl
δ). From Lemma 7, we can connect(τ0, x0)with [τ l, τ r ]×{x′

0}
takingK ∈ [Kl

δ, K
r
δ ] and, thus, the connectedness of(τ0, x0) with (τ ′

0, x
′
0) is obtained.

If (17) holds with equality, then because of (16) we havema 6= mb (sayma > mb), and
K = 0 does not belong to the domainD of τ(K). Reasoning as aboveK+ ∈ D, K+ > 0
is found, and the result follows from Lemma 6.

Finally, the remaining cases (where not necessarily both inequalities (16) hold) are com-
binations of this one and the cases in Lemma 8. �

Now, we are ready to prove our main result on connectedness. The proof of (2) in Theorem
1 is the consequence of Propositions 1 and 2.

Proposition 1. Let (I × F, −dτ2 + f 2g) be a GRW space–time with weakly convex fiber
(F, g) and satisfying Condition(C). Then it is geodesically connected.

Proof. Let (τ0, x0), (τ
′
0, x

′
0) ∈ I × F , L = d(x0, x

′
0), L > 0 be. Suppose∫ b∗

τ0

f −2
(

1

f 2
− mr

)−1/2

≤ L,

∫ τ0

a∗
f −2

(
1

f 2
− ml

)−1/2

≤ L,

ma = ml < mr = mb, 2db < L ≤ diam(F ), 2da ≥ L anddb ≥ ib (from Lemma 9 this is
the only relevant case to study). Asdb ≥ ib there existDr

1 ≤ mb such that∫ τ0

a∗
f −2

(
1

f 2
− Dr

1

)−1/2

+
∫ b

a∗
f −2

(
1

f 2
− Dr

1

)−1/2

< 2db < L.
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On the other hand, as 2da ≥ L for Dr
2 < Dr

1 near enough toml we have

∫ τ0

a∗
f −2

(
1

f 2
− Dr

2

)−1/2

+
∫ b

a∗
f −2

(
1

f 2
− Dr

2

)−1/2

> L.

Therefore, the domainD of τ(K) containsKr
2 = Dr

2 − 1/f 2(τ0) but notKr
1 = Dr

1 −
1/f 2(τ0). From Lemma 6,(τ0, x0) can be connected with [τ(Kr

2), b)×{x′
0}. ChooseKr =

Dr − 1/f 2(τ0) ∈ [Kr
2, Kr

1) such thatτ(Kr) > b − δ for δ small. As 2da ≥ L, there exist
Dl , ma < Dl < Dr such thatτ(Kl) < a + δ (Kl = Dl − 1/f 2(τ0)). Thus, the result
follows from Lemma 7. �

Proposition 2. Let (I × F, −dτ2 + f 2g) be a GRW space–time with weakly convex fiber
(F, g) and satisfying Condition(R). Then it is geodesically connected.

Proof. We will use systematically that ifD is close enough tom andD > m thenK+ =
1/f 2(τ0) − D(> 0) andK− = D − 1/f 2(τ0)(< 0) satisfy [K−, K+] ⊂ D; thus, Lemma
5 can be claimed. Let(τ0, x0), (τ

′
0, x

′
0) ∈ I × F , L = d(x0, x

′
0), L > 0, and consider the

following two cases:
1. Supposern

i (τ0) ≤ L ≤ rn
s (τ0), ln

′
i (τ0) ≤ L ≤ ln

′
s (τ0) for certainn, n′ ≥ 0. Fix ε > 0

such thata + ε < τ ′
0 < b − ε. Then for someDr

i , D
r
s close tom, chosen such that

m < Dr
i < Dr

s , we have

(−1)n[n−1]

∫ a∗(Dr
i )

τ0

f −2
(

1

f 2
− Dr

i

)−1/2

+
∫ b−ε

a∗(Dr
i )

f −2
(

1

f 2
− Dr

i

)−1/2

< L,

(−1)n[n]

∫ b∗(Dr
s )

τ0

f −2
(

1

f 2
− Dr

s

)−1/2

+
∫ b∗(Dr

s )

b−ε

f −2
(

1

f 2
− Dr

s

)−1/2

> L,

(18)

if n ≥ 1, or

∫ b−ε

τ0

f −2
(

1

f 2
− Dr

i

)−1/2

< L,

∫ b∗(Dr
s )

τ0

f −2
(

1

f 2
− Dr

s

)−1/2

+
∫ b∗(Dr

s )

b−ε

f −2
(

1

f 2
− Dr

s

)−1/2

> L, (19)

if n = 0. Reasoning similarly to the left, we obtain analogousDl
i, D

l
s , with m < Dl

i <

Dl
s . From Lemma 4, there existDr, Dl , with Dr

i < Dr < Dr
s , Dl

i < Dl < Dl
s such

that τ(Kr) > b − ε, τ(Kl) < a + ε, whereKr = (−1)n(1/f 2(τ0) − Dr), Kl =
(−1)n

′−1(1/f 2(τ0) − Dl). Therefore, asa + ε < τ ′
0 < b − ε, the connectedness of

(τ0, x0) with (τ ′
0, x

′
0) is a consequence of Lemma 5.

2. Suppose nowL < r0
i (τ0)(< rn

i (τ0)) and L < l0i (τ0)(< lni (τ0)). As we saw

in Definition 4 and the comments below,r0
i (τ0) = ∫ b

τ0
f −2(1/f 2 −m)−1/2 (analogously
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for l0i ), thus, there existε > 0, a + ε < τ ′
0 < b − ε such that

∫ b−ε

τ0

f −2
(

1

f 2
− m

)−1/2

> L,

∫ τ0

a+ε

f −2
(

1

f 2
− m

)−1/2

> L.

But the limit of
∫ b-ε
τ0

f −2(1/f 2 − D)−1/2 whenD → −∞ is 0, thus we obtainDr < m

such that
∫ b-ε
τ0

f −2(1/f 2 − Dr)−1/2 = L. So, takingKr = 1/f 2(τ0) − Dr(> 0), we

obtainτ(Kr) = b − ε. Analogously, there existKl < 0 such thatτ(Kl) = a + ε.
Therefore, we obtain the connectedness of(τ0, x0) with (τ ′

0, x
′
0) from Lemma 5 again.

The remaining cases are combinations of the previous ones. �

Proof of Theorem 2. For (1) assume thatz0 = (τ0, x0), z′
0 = (τ ′

0, x
′
0) are causally related

and τ0 < τ ′
0. From Theorem 1 there exist a non-spacelike geodesicγ : J → I × F ,

γ (t) = (τ (t), γF (t)) joining them. As(F, g) is strongly convex, necessarily∫ τ ′
0

τ0

f −2
(

1

f 2
− D0

)−1/2

= d(x0, x
′
0) (20)

beingD0 = g(dγ /dt, dγ /dt) ≤ 0. But the integral
∫ τ ′

0
τ0

f −2(1/f 2 − D)−1/2 is strictly
increasing withD for D ≤ 0; thus,γ is the only causal geodesic joiningz0 and z′

0.
Moreover, whenD > 0 the integral (possibly under Convention 1) is bigger than when
D = 0; so, no spacelike geodesic joinsz0 andz′

0.
In order to prove (2) assume that neither Condition (C) nor Condition (R) hold and

consider the following cases. In the first three cases we will assume that Condition (R) is
not applicable, and Condition (C) does not hold atb (at a would be analogous). Recall
that, from Lemma 3, 1/f 2 is decreasing atb; in the first caseb is a non-unique absolute
minimum; in the second,b is the unique absolute minimum, which is simpler; in the third,
b is not an absolute minimum, which compels to use properly the definition ofib. In the
fourth case, Condition (R) is applicable, but it does not hold (neither does Condition (C),
see Remark 2).
1. Assume thatb is a relative minimum of 1/f 2 andm = mb is reached at a pointτm ∈

(a, b). As 2db < diam(F ), chooseL > 0 such that 2db < L < diam(F ). From this
choice, there existτ r

0 > τm, close tob such that

2
∫ b∗(D)

τ r
0

f −2
(

1

f 2
− D

)−1/2

< L ∀D ∈
(

m,
1

f 2(τ r
0)

)
. (21)

As τm is a minimum,(d/dτ)1/f 2|τm = 0. Thus, there existτ l
0 near enough tob such

that

2
∫ τ l

0

a∗(D)

f −2
(

1

f 2
− D

)−1/2

> L ∀D ∈
(

m,
1

f 2(τ l
0)

)
. (22)

Now, taking anyτ0 > Max{τ r
0 , τ l

0}, τ ′
0 > τ0 andx0, x

′
0 with d(x0, x

′
0) = L, it is clear

that (21) and (22) forbid to connect(τ0, x0), (τ ′
0, x

′
0) by means of a geodesic.
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2. Assume thatb is a relative minimum,m = mb < ma and 1/f 2(τ ) > m for all τ ∈ (a, b).
Then, necessarily 2db < diam(F ). Choose againτ r

0 such that (21) holds. Recall that we
can impose now, additionally, thatτ r

0 is the strict minimum of 1/f 2 on(a, τ r
0]. So, clearly

(τ r
0 , x0) and(τ ′

0, x
′
0) cannot be joined by a geodesic, ifτ r

0 < τ ′
0 andd(x0, x

′
0) = L.

3. Assume thatb is a relative minimum andm < mb. As db < ib there existτ l
0 such that

2
∫ τ l

0

a∗(D)

f −2
(

1

f 2
− D

)−1/2

≥ 2db + 2ε ∀D ∈ (m, mb] (23)

for someε > 0 such that 2db + 2ε < diam(F ). From the continuity stated in Lemma
4, there existδ > 0 such that inequality (23) holds if the right member is replaced by
L = 2db + ε for all D ∈ (m, mb + δ].

Now, as in case (1) we can takeτ0(= τ r
0) > τ l

0 with 1/f 2(τ0) < mb + δ and such
that (21) holds for allD. Thus, for anyτ ′

0 > τ0, we cannot connect(τ0, x0), (τ ′
0, x

′
0) by

means of a geodesic, ifd(x0, x
′
0) = L.

4. Assume that 1/f 2(τ ) > m for τ ∈ (a, b) andma = mb = m. Suppose that Condition
(R) is not fulfilled by, say ther ’s, i.e. rn

s (τ0) < rn+1
i (τ0) with rn

s (τ0) < diam(F ) for
certainn ≥ 0 andτ0 ∈ I (see the comments below Definition 4). FixL = d(x0, x

′
0)(≤

diam(F )) with rn
s (τ0) < L < rn+1

i (τ0). These inequalities imply forn ≥ 1 that there
exist anε > 0 such that

lim inf
D↘m

{
(−1)k [k−1]

∫ a∗

τ0

f −2
(

1

f 2
− D

)−1/2

+
∫ b−ε

a∗
f −2

(
1

f 2
− D

)−1/2
}

> L,

lim sup
D↘m

{
(−1)k

′
[k′]

∫ b∗

τ0

f −2
(

1

f 2
− D

)−1/2

+
∫ b∗

b−ε

f −2
(

1

f 2
− D

)−1/2
}

< L

(24)

for k = n + 1, k′ = n and, thus for allk ≥ n + 1 andk′ ≤ n. But this implies that for
someδ > 0 with b∗(D = m + δ) > b − ε if m < D < m + δ then

(−1)k [k−1]

∫ a∗

τ0

f −2
(

1

f 2
− D

)−1/2

+
∫ b−ε

a∗
f −2

(
1

f 2
− D

)−1/2

> L,

(−1)k
′
[k′]

∫ b∗

τ0

f −2
(

1

f 2
− D

)−1/2

+
∫ b∗

b−ε

f −2
(

1

f 2
− D

)−1/2

< L (25)

for k ≥ n + 1, k′ ≤ n (there are analogous inequalities whenn = 0). Therefore(τ0, x0)

cannot be geodesically connected with(τ ′
0, x

′
0) if τ ′

0 > b − ε. �

Discussion.Next, we will see what happens if we assume just weak convexity in Theorem
2 and Condition (R) is applicable (a similar study could be done if Condition (C) is appli-
cable instead). As a consequence, we will give a proof of the (well known) non-geodesic
connectedness of de Sitter space–time. It should be noticed that previous proofs use the
high degree of symmetry of this space–time [7,20]. In our proof we will see what is the
exact role of this symmetry.
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Fix z0 = (τ0, x0) ∈ I × F , x′
0 ∈ F , x0 6= x′

0 andε > 0. Putr0
i,ε(τ0), r

n
s,ε(τ0), etc. equal

to the quantities in Definition 4 but without taking the limitε → 0 (the extension of this
new definition whena = −∞ or b = ∞ is obvious, see de Sitter space–time below). Now,
consider

Aε = ∪n≥0[rn
i,ε(τ0), r

n
s,ε(τ0)] ∪ [0, r0

i,ε(τ0)],

Bε = ∪n≥0[lni,ε(τ0), l
n
s,ε(τ0)] ∪ [0, l0i,ε(τ0)],

and also

L = {length (γ̂F )|γ̂F is an F -geodesic which joinsx0 and x′
0} ⊂ (0, ∞).

From the proof of Theorem 2,z0 can be joined with [a + ε0, b − ε0] × {x′
0} if

L ∩ Aε ∩ Bε 6= ∅

for someε < ε0. Moreover, it is also clear thatz0 cannot be joined with the points in
(a, a + ε0) × {x′

0} ∪ (b − ε0, b) × {x′
0} if

L ∩ Aε0 = ∅, L ∩ Bε0 = ∅. (26)

For de Sitter space–time,I = R, f = cosh and the fiber is the usual sphere of radius
1. Recall that when the intervalI is not bounded, we must replaceb − ε (if b = ∞) and
−(a + ε) (if a = −∞) by M > 0, and the limitε → 0 must be replaced byM → ∞. Take
z0 = (0, x0); by Definition 4 (M → ∞) we have

rn
i (0) = rn

s (0) = 1
2π + nπ = lni (0) = lns (0). (27)

ForM = 0, the new definitionsr0
i,ε(0), rn

s,ε(0) (ε ≡ ∞) read

rn
i,ε(0) = nπ = lni,ε(0), rn

s,ε(0) = (n + 1)π = lns,ε(0). (28)

Now, choosex′
0 as the antipodal point ofx0, i.e.,

L = {(2n + 1)π |n = 0, 1, 2, . . . }.

From the two limit cases (27) and (28), it is clear that condition (26) is fulfilled for any
M > 0. Soz0 cannot be joined by means of a geodesic with(−∞, 0) ×{x′

0}∪(0, ∞)× {x′
0}.

Summing up, for de Sitter space-time, the “symmetries” of its warping function are
essential in order to have enough “holes” inAε0 andBε0, where all the elements ofL lie.
But the only relevant symmetry of the fiber is that there are two pointsx0, x

′
0 such that the

lengths of the geodesics which join them has a constant gap. In our case, this gap (2π ) and
the symmetries off fit well whend(x0, x

′
0) = π .

Proof of Theorem 3. For the first assertion consider anF -geodesiĉγF (r), r ∈ [0, L] with
L = longγ̂F , γ̂F (0) = x0 andγ̂F (L) = x′

0. From our hypotheses, if 1/f 2 reaches a relative
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minimum atb (resp.a) andb∗(mr) = b (resp.a∗(ml) = a) then

either
∫ b∗(mr )

τ0

f −2
(

1

f 2
− mr

)−1/2

> L or 2db > L(
resp. either

∫ τ0

a∗(ml)

f −2
(

1

f 2
− ml

)−1/2

> L or 2da > L

)
. (29)

As we checked in Lemmas 8 and 9, inequalities (29) allow us to obtain a geodesic joining
z0 andz′

0 with component on the fiber a reparameterization ofγ̂F (r) (recall that in these
lemmasγ̂F (r) was always taken as a minimizingF -geodesic, but the minimizing property
was used just to ensure that (29) holds). It is straightforward to check that these inequalities
also hold ifb∗(mr) < b or a < a∗(ml), because the corresponding integral is then infinite.

If (F, g) is complete andF is not contractible then, for fixedx0, x
′
0 ∈ F , there exist

a sequence of geodesicsγ̂ m
F (r) joining x0 and x′

0 with diverging lengthsLm (see, e.g.
[15, Theorem 2.11.9]). Letγ m(t) = (τm(t), γ m

F (t)) be the geodesic connectingz0, z
′
0

constructed from̂γ m
F (r), and assumeτ0 ≤ τ ′

0. If γ m(t) is causal, then necessarily (7) and

(8) hold withL = Lm. But in this caseD ≤ 0 and, thus,Lm ≤ ∫ τ ′
0

τ0
1/f (< ∞). As the

sequence{Lm} is diverging, all the geodesics but a finite number are spacelike.
The last assertion is also a direct consequence of the fact that the lengths of theF -pregeo-

desics corresponding to causal geodesics are bounded by
∫ τ ′

0
τ0

1/f , and Lemma 10. �

Lemma 10. If (M, g) is a complete Riemannian manifold andp, q ∈ M are not conjugate,
then for allL > 0 there exist at most finitely many geodesics with length smaller than L
connecting p and q.

Proof. Otherwise, from the compactness of{v ∈ TpM : |v| ≤ L}, we would obtain a
sequence{vn}n∈N, vn → v0, vn, v0 ∈ TpM such that expp(vn) = expp(v0) = q for all n.
Then,v0 would be a singular point of expp and thus,p andq would be conjugate for the
geodesicγ (t) = expp(t · v0), t ∈ R, which is a contradiction. �

Remark. In the proof of Theorem3,we have used that, for a complete Riemannian manifold
which is non-contractible in itself, infinitely many geodesics joining p and q exist, and there
is a sequence of them with diverging lengths. So, in this case, Lemma10 says that if p,
q are not conjugate then any sequence of geodesics joining them have diverging lengths.
In particular, the number of geodesics joining two non-conjugate points of a complete
Riemannian manifold must be enumerable.

5. Conjugate points and Morse-type inequalities

In order to prove results on conjugate points, it seems more natural to consider all the
geodesics obtained by varying a fixed one with the same speedD. So, we will drop previous
normalizationc = 1 for geodesics non-tangent to the base. The only modification in previous
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formulae which we will have to bear in mind is that now (5) reads

dt

dr
= 1√

c
f 2 ◦ τ ◦ t. (30)

So the definition ofh in (7) must be changed to

hε = ε
√

cf −2
(

−D + c

f 2

)−1/2

. (31)

Theorem 4. Let z0 = (τ0, x0), z′
0 = (τ ′

0, x
′
0) be two points of the GRW space–time(I ×

F, −dτ2 + f 2g) with n-dimensional fiber(F, g). Assume thatγ (t) = (τ (t), γF (t)) is
a geodesic which joins them, withγF (t) being the reparameterization of a non-constant
F-geodesicγ̂F , and thatz0, z

′
0 are conjugate alongγ with multiplicity m ∈ {0, 1, . . . , n}

(m = 0 means not conjugate).
1. Thenx0, x′

0 are conjugate points of multiplicitym′ ∈ {m, m − 1} along γ̂F (at the
corresponding points of the domain). In particular, if z0, z

′
0 are non-conjugate then so

arex0 andx′
0.

2. If γ is a causal geodesic(or any geodesic without zeroes indτ/dt) thenm′ = m.

Remark.
1. The following direct computation shows that even in the excluded caseγ̂F ≡ x0 = x′

0
(γ̂F is constant), the pointsz0, z

′
0 are not conjugate. Thus, this case can be included

in Theorem4 with the convention “a constant geodesicγ̂F has no conjugate points”.
Assumeτ0 < τ ′

0 and consider the geodesicγ (t) = (t, x0), t ∈ [τ0, τ
′
0]. Let Ei(t), i ∈

{1, . . . , n} be orthonormal parallel fields alongγ which span the orthogonal toγ ′. A
vector fieldJ (t) = ∑

iai(t)Ei(t) alongγ is a Jacobi field if and only if each function
ai(t) is a solution of the Sturm differential equation

a′′(t) − f ′′(t)
f (t)

a(t) = 0, t ∈ [τ0, τ
′
0]. (32)

But, clearlyf (t) is also a strictly positive solution of(32). Thus, ifa(τ0) = 0 and
a′(τ0) 6= 0 thena(τ) cannot vanish on(τ0, τ

′
0], as required.

2. Moreover, for anyτ > τ0, replace(32)by the spectral equation(see[2])

a′′(t) − f ′′(t)
f (t)

a(t) + λτ a(t) = 0, (33)

λτ ∈ R with boundary conditionsa(τ0) = a(τ) = 0. A simple Sturm argument shows
that if τ < τ̄ thenλτ > λτ̄ , i.e. the spectral flowλ(τ) ≡ λτ is decreasing. This also
holds for the static bidimensional case(see Section6), and should be compared with
[2]. At any case, the main result of[2] can be reobtained, as we will see in Section6,
independently, it is also reobtained in[13], in the general setting of geodesics admitting
a timelike Jacobi field.
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Proof of Theorem 4.
Step1. For any geodesicγ , m′ ≥ m − 1.

Considerv0, v1, . . . , vm ∈ Tz0(I × F) such thatV = Span{v1, . . . , vm}, whereV =
ker((dexpz0

)v0) and expz0
(v0) = z′

0. From semi-Riemannian Gauss Lemma [16, Section
5.1],v0 and eachvi are orthogonal, so{v0, . . . , vm} are linearly independent (recall that if
v0 is lightlike then asv0 andvi are not collinear then eachvi is spacelike). Moreover, con-
sider the usual projection on the fiber,πF ; asγ is not on the base, then(dπF )z0v0 6= 0 and
say{(dπF )z0v0, (dπF )z0v1, . . . , (dπF )z0vm−1} are linearly independent. So(dπF )z0v0

is parallel to the initial velocity of̂γF , and we have just to prove that there exist a direction
of conjugacy ofγ̂F betweenx0, x

′
0 in each planeWi = Span{(dπF )z0v0, (dπF )z0vi} ⊆

Tx0F for i = 1, . . . , m − 1.
Definingαi(s) = v0 + svi , we have d/ds|s=0 expz0

(αi(s)) = 0 and, thus

d

ds

∣∣∣∣
s=0

πF ◦ expz0
(αi(s)) = 0. (34)

There exist a non-constant continuous curveβi(s) ∈ Wi, i = 1, . . . , m − 1 such that

expx0
(βi(s)) = πF ◦ expz0

(αi(s)). (35)

In fact, we take

βi(s) = µi(s)
dπF (αi(s))

|dπF (αi(s))| , (36)

whereµi(s) is the length of the pregeodesict → πF ◦ expz0
(t αi(s)) on [0, 1].

Recall that(dπF )z0v0 is parallel toβi(0) ≡ ω0, and we had to prove that(d expx0
)w0

restricted toWi is singular. Otherwise,βi(s) would be smooth around 0 from (35). From
(36), 0 6= β ′

i (0) ∈ Wi , and from (34) and (35),β ′
i (0) ∈ ker(d expx0

)ω0, a contradiction.
Step2. If γ is causal thenm′ ≥ m.

We will check that ifγ is not tangent to the base but it is causal (or any geodesic
without zeroes in the derivative of the timelike component) then{v1, . . . , vm} are tangent
to the fiber. So{(dπF )z0v0, (dπF )z0v1, . . . , (dπF )z0vm} are linearly independent and the
result follows as in the previous step.

From the hypotheses,

dτ

dt
= ε

(
−D + c

f 2 ◦ τ

)1/2

6= 0 (37)

for all t , whereD = gf (dγ /dt, dγ /dt) andc = (f 4 ◦ τ)g(dγF /dt, dγF /dt). Consider
the usual projection on the baseπI , we will check that(dπI )z0(vi) = 0. Let αi(s) ∈
Tz0(I × F) be a curve such thatαi(0) = v0, d/ds|s=0 αi(s) = vi , as above, and we
also imposegf (αi(s), αi(s)) = gf (v0, v0) for all s. Put γ (s, t) = expz0

(t αi(s)) ≡
(τs(t), γFs (t)) (thusD(s) ≡ gf (v0, v0)). If dπI (vi) = d/ds|s=0 τ ′

s(0) 6= 0 then, asD =
−τ ′

s(0)2 + c(s)/f 2(τ0) is constant, we obtain that d/ds|s=0 c(s) 6= 0. Now, including in
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(37) the dependence ons we have∫ τs (1)

τs (0)

dτ

ε(−D + c(s)/f 2(τ ))1/2
= 1,

and deriving with respect tos, we obtain d/ds|s=0 τs(1) 6= 0. Therefore, d/ds|s=0 πI ◦
expz0

(αi(s)) 6= 0 which contradicts thatvi is a direction of conjugacy.
Step3. m ≥ m′.

Letx0, x′
0 be conjugate points of multiplicitym′ along theF -geodesiĉγF and suppose

γ (0) = z0, γ (1) = z′
0. If Span{w1, . . . , wm′ } = ker((d expx0

)w0) where expx0
(w0) =

x′
0, consider a curveβi(s) in Tx0F such thatβi(0) = w0, d/ds|s=0 βi(s) = wi and

|βi(s)| = |w0| for all s, i = 1, . . . , m′. Define αi(s) ∈ Tz0(I × F) such that
(dπI )z0(αi(s)) = dτ/dt (0) and

(dπF )z0(αi(s)) =
√

c

f 2(τ0)

βi(s)

|w0| . (38)

For eachs, the geodesic on the GRW space–timeγ (s, t) = expz0
(t αi(s)) ≡ (τs(t), γFs

(t)) satisfy thatγFs (t) = expx0
(rs(t)βi(s)) wherers(t) is an increasing function, because

γFs (t) is a pregeodesic on the fiberF . But from (4) and (30),rs(t) is determined just by
c(s) ≡ c andD(s) ≡ D, sors(t) is independent ofs, i.e. rs(t) ≡ r(t). Computing for
s = 0, it is clear thatr−1(1) = 1 thus, necessarilyπF ◦ expz0

(αi(s)) = expx0
(βi(s)) for

all s. As wi ∈ ker((d expx0
)w0), we have

d

ds

∣∣∣∣
s=0

πF ◦ expz0
(αi(s)) = 0. (39)

On the other hand, from the relation between the parametersτ andr for γ (s, t) given by
(31), we have∫ τ ′

0(s)

τ0

√
cf −2(τ )

(
−D+ c

f 2(τ )

)−1/2

dτ = |w0| (= length of γFs for all s),

(40)

where the integral is possibly considered under Convention 1. But the integrand and the
right-hand side in (40) are independent ofs, thusτ ′

0(s) = πI ◦expz0
(αi(s)) is constant, and

d

ds

∣∣∣∣
s=0

πI ◦ expz0
(αi(s)) = 0. (41)

From (39) and (41)vi = d/ds|s=0 αi(s) yields a direction of conjugacy ofγ for anyi =
1, . . . , m′, and it is clear from the construction that thesem′ directions are independent.

�
Remark. Note that the following case may hold: the pointx0 has a conjugate pointx1

along the F-geodesiĉγF , but if we consider any geodesicγ emanating fromz0 = (τ0, x0)

which projects onγ̂F , the reparameterizationγF of γ̂F does not reach untilx1 and, so,
there is no conjugate pointz1 of z0 alongγ which projects ontox1. That is, the geodesic
γ “escapes” at the extremes of I beforêγF reachesx1. This possibility may happen, e.g.
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when the space–time is extendible through the extremes of I. But it does not necessarily
happen because of this reason; in fact, de Sitter space–time, wheref = cosh,is a simple
counterexample(recall that if

∫ b

c
f = ∞ all null geodesics are future-complete[18] and

the GRW space–time not only is not extendible through b as a GRW space–time but also it is
not extendible as a space–time; compare all this discussion with[21, p. 73]).When the fiber
is weakly convex, the necessary and sufficient conditions to ensure that, for any geodesicγ

non-tangent to the base,γF will cover all γ̂F are the “non-escape” equalities

∫ c

a

f −2
(

1

f 2
+ 1

)−1/2

= ∞,

∫ b

c

f −2
(

1

f 2
+ 1

)−1/2

= ∞ (42)

for certainc ∈ (a, b) (see[8, Lemma4]). Recall that this condition implies Condition(A)
and, so the space–time will be geodesically connected.

Summing up we get the following corollary.

Corollary 1. Consider a GRW space–time with weakly convex fiber where the “non-escape”
equalities(42)hold. Then the space–time is geodesically connected and any causal geodesic
γ (t) = (τ (t), γF (t)) starting atz0 has conjugate points in bijective correspondence(in-
cluding multiplicities) with the conjugate points of the inextendible geodesicγ̂F (r) obtained
from the projectionγF (t) on the fiber.

Remark. This result allows to extend, in our ambient, the ones by Uhlenbeck[21] for null
geodesics to all causal geodesics. For instance, normalize all causal geodesics(non-tangent
to the base) such thatc ≡ (f 4 ◦ τ)g(dγF /dt, dγF /dt) = 1 and chooseD ≤ 0; all
future-pointing causal geodesics starting atz0 = (τ0, x0) and having associated the fixed
value ofD = gf (dγ /dt, dγ /dt), are in bijective correspondence with the F-geodesics
starting atx0, being the conjugate points preserved. So

Under the assumptions of Corollary1, and fixedD ≤ 0, if x0 andx1 are not conjugate
the loop space of F is homotopic to a cell complex constructed with a cell for each causal
D-geodesic(with c = 1) fromz0 to the lineLx1 = {(t, x1) : t ∈ I } with the dimension of
the cell equal to the index of the D-geodesic.

Recall that in[21], the conformal invariance of null conjugate points is explicitly used,
but this invariance does not hold for timelike geodesics(bidimensional anti-de Sitter
space–time, which is globally conformal to a strip in Lorentz–Minkowski space–time, is
a simple example); this makes our approach necessary.

Theorem 4 and equalities (42) can be also combined to yield Morse relations as follows.
Fix two non-conjugate pointsz0 = (τ0, x0), z′

0 = (τ ′
0, x

′
0) and a fieldK. Let �(z0, z

′
0)

(resp.�(x0, x
′
0)) be the space of continuous paths joiningz0, z

′
0 in I × F (resp.x0, x

′
0 in

F ). LetPz0,z
′
0
(t) (resp.Px0,x

′
0
(t)) be the Poincaré polynomial of�(z0, z

′
0) (resp.�(x0, x

′
0)),

i.e.Pz0,z
′
0
(t) is the formal series

Pz0,z
′
0
(t) = β0 + β1t + β2t

2 + · · · ,
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whereβq is theqth Betti number of�(z0, z
′
0) for homology with coefficients inK, βq =

dimHq(�(z0, z
′
0),K). Clearly,Pz0,z

′
0
(t) ≡ Px0,x

′
0
(t). Let

Mz0,z
′
0
(t) = ā0 + ā1t + ā2t

2 + · · · (resp. Mx0,x
′
0
(t) = a0 + a1t + a2t

2 + · · · )
be the Morse polynomials ofz0, z

′
0 (resp.x0, x

′
0), i.e.āq (resp.aq ) is the number of geodesics

joining z0 andz′
0 (resp.x0 andx′

0) with Morse index equal toq, where the Morse index of a
geodesic connecting two fixed non-conjugate points is the sum of the indexes of conjugate
points to the first point along the geodesic. Then, under the hypotheses of Theorems 3 and
4, we have

aq ≤ āq + āq+1 ∀q ≥ 0, (43)

ā0 > 0 ⇒ a0 > 0, āq > 0 ⇒ aq−1 + aq > 0 ∀q ≥ 1. (44)

In particular, if the polynomials are finite thenMz0,z
′
0
(t) ≥ Mx0,x

′
0
(t), ∀t ≥ 1. But if

(F, g) is a complete Riemannian manifold, then the well-known Morse relations imply the
existence of a formal polynomial with non-negative integer coefficientsQ(t) such that

Mx0,x
′
0
(t) = Px0,x

′
0
(t) + (1 + t)Q(t). (45)

Remark. In general, it is not true thata0 ≥ ā0 or aq−1 + aq ≥ āq . Recall that many
geodesics in the GRW space–time connectingz0, z

′
0 may project on the same pregeodesic

of F. A simple counterexample of this is de Sitter space–time(with a straightforward modi-
fication, one can also get that hypotheses in Theorem3 are fulfilled). So, inequalities(44)
cannot be improved.

Summing up we get the following corollary.

Corollary 2. In a globally hyperbolic GRW space–time satisfying either Condition(A) or
Condition(B) with da , db (if defined) equal to infinity the Morse inequalities(43)and(44)
(with (45))hold.

As a consequence, if the Morse polynomialMz0,z
′
0
(t) is finite then, for each pair of

non-conjugate pointsz0, z
′
0 there exist a polynomialQ(t) with non-negative integer coeffi-

cients and computable from the fiber such that

Mz0,z
′
0
(t) ≥ Pz0,z

′
0
(t) + (1 + t)Q(t), ∀t ≥ 1.

6. Applications

6.1. Two-dimensional case

Next, we will particularize previous results to bidimensional GRW space–times with
strongly convex fiber (necessarily an interval(J, dx2)). Recall that in this case the opposite
metric−gf is also Lorentzian and, in fact, it corresponds to a static (standard) space–time.



J.L. Flores, M. Śanchez / Journal of Geometry and Physics 36 (2000) 285–314 311

The chronological relation can be now extended for non-causally related points, just defining
that two points are spacelike related if they are chronologically related for−gf . In fact, we
will simplify our terminology with the following (re-)definition.

Definition 5. Consider a bidimensional GRW (or static) space–time. Two points(τ0, x0),

(τ ′
0, x

′
0) are spacelike (resp. timelike, lightlike) related if and only if there exists a spacelike

(resp. timelike, lightlike with non-vanishing derivative) curve joining them.

From a direct computation (see also [17, Theorem 3.3 and Lemma 3.5]) we get the
following lemma.

Lemma 11. Given(τ0, x0), (τ
′
0, x

′
0) ∈ (I × J, −dτ2 + f 2 dx2), they are

1. spacelike related if and only if
∫ τ ′

0
τ0

f −1 < d(x0, x
′
0);

2. lightlike related if and only if
∫ τ ′

0
τ0

f −1 = d(x0, x
′
0);

3. timelike related if and only if
∫ τ ′

0
τ0

f −1 > d(x0, x
′
0).

Now, as a consequence of Lemma 11 and Theorem 2 we get the following corollary.

Corollary 3. In a GRW space–time(I × J, −dτ2 + f 2 dx2)

1. If (τ0, x0), (τ ′
0, x

′
0) are timelike(resp. lightlike) related then there exist a unique geodesic

(necessarily timelike(resp. lightlike)) which joins them.
2. All (τ0, x0), (τ ′

0, x
′
0) which are spacelike related can be joined by a geodesic(necessarily

spacelike) if and only if Condition(C) or Condition(R) holds.

From Theorem 4 and the fact that there are no conjugate points on a manifold of dimension
1, we get the following corollary.

Corollary 4. In a GRW space–time(I×J, −dτ2+f 2 dx2)no geodesicγ (t) = (τ (t), γF (t))

without zeroes indτ/dt have conjugate points.
In particular, causal geodesics are free of conjugate points.

Now, consider a bidimensional static space–time, say(K × J ⊆ R2, gS = dy2 −
f 2(y) dx2), wheregScan be seen as the reversed metric of a GRW space–time. Summarizing
the conclusions of Lemma 11 and Corollaries 3 and 4, the following extension of Theorem
1.1 in [5] can be given (see also [13, Proposition 6.6]).

Corollary 5. Given(y0, x0), (y
′
0, x

′
0) in the static space–time(K × J ⊆ R2, gS = dy2 −

f 2(y) dx2), they are

1. Spacelike related if and only if
∫ y′

0
y0

f −1 > d(x0, x
′
0). In this case there exist a unique

geodesic which joins them; this geodesic is necessarily spacelike and without conjugate
points.

2. Lightlike related if and only if
∫ y′

0
y0

f −1 = d(x0, x
′
0). In this case there exist a unique

geodesic which joins them; this geodesic is necessarily lightlike and without conjugate
points.
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3. Timelike related if and only if
∫ y′

0
y0

f −1 < d(x0, x
′
0). All points which are timelike re-

lated can be joined by a geodesic(necessarily timelike) if and only if Condition(C) or
Condition(R) holds.

Remark. In fact, no geodesic of the static space–time without zeroes in the derivative of
its spacelike component has conjugate points. Anti-de-Sitter space–time is an example of
static space–time where all the timelike geodesics have conjugate points. Moreover, it is
not geodesically connected.

6.2. Conditions on curvature

As commented in Section 1, it is natural to assume, for a realistic GRW space–time that
Ric(∂t , ∂t ) ≥ 0, and it is straightforward to check that this condition is equivalent tof ′′ ≤ 0
(see [16, Corollary 7.43]). Recall that in this case limτ→a,b f ′ and limτ→a,b f always exist.
So taking into account the cases in Table 1 we see that Condition (A) always holds except
whenb < ∞ (resp.a > −∞) andf ′(b) > 0 (resp.f ′(a) < 0). In this case, although
the GRW space–time is not geodesically connected, it is possible to extend the warping
functionf throughb (resp.a) obtaining thus an extended space–time, which is also GRW.
The GRW space–time will be calledinextendibleif whenever an extreme ofI is finite,
thenf cannot be extended continuously at these extremes to a real valueα > 0. It seems
clear that from a physical viewpoint just inextendible GRW space–times must be taken into
account.

Therefore, Theorems 1 and 3 are applicable to these inextendible GRW space–times,
yielding the points (1) and (4) in Corollary 6 (the other two are included for the sake of
completeness).

Corollary 6. An inextendible GRW space–time withRic(∂t , ∂t ) ≥ 0 and weakly convex
fiber satisfies the following:
1. Each two causally related points can be joined with one non-spacelike geodesic, which

is unique if the fiber is strongly convex.
2. The space–time is geodesically connected. Moreover, each strip(â, b̂) × F ⊂ I × F ,

a < â < b̂ < b with the restricted metric is geodesically connected if and only if
f ′(â) ≥ 0 andf ′(b̂) ≤ 0 (i.e.f ′(â) · f ′(b̂) ≤ 0).

3. There exist a natural surjective map between geodesics connectingz0 = (τ0, x0),
z′

0 = (τ ′
0, x

′
0) ∈ I × F and F-geodesics connectingx0 and x′

0. Under this map,
when the geodesic connectingz0 and z′

0 is causal then the multiplicity of its con-
jugate points is equal to the multiplicity for the corresponding geodesic connecting
x0, x′

0.
4. If (F, g) is complete and F is not contractible in itself, then anyz0, z

′
0 ∈ I × F can be

joined by means of infinitely many spacelike geodesics. Ifx0, x
′
0 are not conjugate there

are at most finitely many causal geodesics connecting them.

For the last assertion (2), recall that it is straightforward from Theorem 2 under strongly
convexity. But, from the proof of this theorem, this assumption can be dropped because
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f ′′ ≤ 0 (recall that then Conditions (A), (B), (C) are equivalent and Condition (R) is not
applicable).

Finally, we give a further consequence of equalities (42).

Corollary 7. Consider a GRW space–time(I × F, gf ) which is globally hyperbolic and
satisfies the non-escape equalities(42),and fixD0 ≤ 0.If any geodesicγ (t) = (τ (t), γF (t))

starting atz0 = (t0, x0) and having associated values D, c equal toD0, 1, respectively, is
free of conjugate points then the fiber can be covered topologically byR

n, beingn = dimF .

Proof. Under this assumption theF -geodesics starting atx0 have no conjugate points and
so, asF is complete, expx0

: Tx0F ≡ Rn → F is a surjective local diffeomorphism. Taking
the pull-back metric onTx0F , a local isometry with a domain complete manifold (and so a
Riemannian covering) is obtained. �

Remark. The assumption on conjugate points whenD0 = 0 holds if in the future ofz0

we haveR(X, Y, Y, X) ≤ 0 whenever X, Y span a degenerate plane on a lightlike geodesic
starting atz0 (see[3, Theorem10.77]);moreover, the non-escape inequalities(42) can be
reduced to∫ c

a

f −1 = ∞,

∫ b

c

f −1 = ∞, (46)

when just null geodesics are considered, so we reobtain[21, Theorem5.3] in our ambient.
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